En physique statistique, l’ensemble grand-canonique est un ensemble statistique qui correspond au cas d'un système qui peut échanger de l'énergie avec un réservoir externe d'énergie (ou thermostat), ainsi que des particules. Il est donc en équilibre thermodynamique thermique et chimique avec le réservoir d'énergie et de particules.
Plus précisément, il s'agit de l'ensemble des « copies virtuelles » (ou répliques fictives) du même système en équilibre avec le réservoir d'énergie et de particules. Contrairement au cas des ensembles microcanonique et canonique, l'énergie et le nombre de particules du système étudié peuvent fluctuer d’une « copie » du système à une autre de l'ensemble.
Par suite, les différents micro-états d'énergie du système étudié ne possèdent pas tous la même probabilité, contrairement au cas microcanonique, du fait de l'interaction avec le réservoir. À l'instar de la situation canonique, il est possible de déterminer la forme générale de la distribution de probabilité des micro-états d'énergie accessibles du système, appelée distribution grand-canonique, caractérisée par sa fonction de partition.
Dans cet ensemble, on considère que le système est composé de particules identiques, et on introduit le potentiel chimique, pour prendre en considération la variation du nombre de particules. Le réservoir doit être considéré grand devant le système, afin que les échanges d’énergie et de particules n’influent pas sur la température du réservoir, et donc sur la température du système. Le réservoir doit alors se comporter comme un thermostat et imposer sa température au système.
On considère l’hamiltonien du système défini comme :
où est l’équation de Schrödinger pour chaque particule i.
Pour chaque ensemble microscopique , on a alors l’énergie et le nombre de particules associés :
Suivant que le système considéré est composé de bosons, ou de fermions, est soumis aux conditions suivantes :
La fonction de partition (parfois appelée grande fonction de partition dans le cas de l'ensemble grand-canonique) est définie comme étant :
où représente l’ensemble statistique de tous les ensembles microscopiques .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course gives an overview of atomistic simulation methods, combining theoretical lectures and hands-on sessions. It
covers the basics (molecular dynamics and monte carlo sampling) and also more adv
En poursuivant notre exploration de l'architecture du stockage, nous nous pencherons sur l'opposition entre formalisme et réalisme dans le cadre d'un projet de transformation de logements dans la vill
En poursuivant notre exploration de l'architecture du stockage, nous nous pencherons sur l'opposition entre formalisme et réalisme dans le cadre d'un projet de transformation de logements dans la vill
vignette|Représentation graphique de la statistique de Maxwell-Boltzmann La statistique de Maxwell-Boltzmann est une loi de probabilité ou distribution utilisée en physique statistique pour déterminer la répartition des particules entre différents niveaux d'énergie. Elle est notamment à la base de la théorie cinétique des gaz. On se donne un système de N particules pouvant prendre les différents états d'énergie discrets E.
En physique statistique, un micro-état (appelé aussi configuration microscopique ou bien état microscopique) est la spécification détaillée d'une configuration microscopique d'un système. Le système visite ce micro-état au cours de ses fluctuations thermiques. Par contraste, le macro-état (appelé aussi configuration macroscopique ou encore état macroscopique) d'un système fait référence à ses propriétés macroscopiques, telles que la pression et la température.
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.
The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with ...
Amer Physical Soc2024
,
Alzheimer's disease (AD) pathological changes may begin up to decades earlier than the appearance of the first symptoms of cognitive decline. Subjective cognitive decline (SCD) could be the first pre-clinical sign of possible AD, which might be followed by ...
Explore le chaos dans les théories quantiques des champs, en se concentrant sur la symétrie conforme, les coefficients OPE et l'universalité de la matrice aléatoire.
This thesis reports on the realization of the first experiments conducted with superfluid, strongly interacting Fermi gases of 6Li coupled to the light field of an optical cavity. In the scope of existing ultracold atomic platforms, this is the first time ...