In physics, the Heisenberg picture or Heisenberg representation is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which the operators (observables and others) incorporate a dependency on time, but the state vectors are time-independent, an arbitrary fixed basis rigidly underlying the theory.
It stands in contrast to the Schrödinger picture in which the operators are constant, instead, and the states evolve in time. The two pictures only differ by a basis change with respect to time-dependency, which corresponds to the difference between active and passive transformations. The Heisenberg picture is the formulation of matrix mechanics in an arbitrary basis, in which the Hamiltonian is not necessarily diagonal.
It further serves to define a third, hybrid, picture, the interaction picture.
In the Heisenberg picture of quantum mechanics the state vectors |ψ⟩ do not change with time, while observables A satisfy
where "H" and "S" label observables in Heisenberg and Schrödinger picture respectively, H is the Hamiltonian and [·,·] denotes the commutator of two operators (in this case H and A). Taking expectation values automatically yields the Ehrenfest theorem, featured in the correspondence principle.
By the Stone–von Neumann theorem, the Heisenberg picture and the Schrödinger picture are unitarily equivalent, just a basis change in Hilbert space. In some sense, the Heisenberg picture is more natural and convenient than the equivalent Schrödinger picture, especially for relativistic theories. Lorentz invariance is manifest in the Heisenberg picture, since the state vectors do not single out the time or space.
This approach also has a more direct similarity to classical physics: by simply replacing the commutator above by the Poisson bracket, the Heisenberg equation reduces to an equation in Hamiltonian mechanics.
For the sake of pedagogy, the Heisenberg picture is introduced here from the subsequent, but more familiar, Schrödinger picture.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems.
In physics, the Schrödinger picture or Schrödinger representation is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators (observables and others) are mostly constant with respect to time (an exception is the Hamiltonian which may change if the potential changes). This differs from the Heisenberg picture which keeps the states constant while the observables evolve in time, and from the interaction picture in which both the states and the observables evolve in time.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which can only yield integer values may have a non-integer mean). It is a fundamental concept in all areas of quantum physics.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
EPFL2024
, , ,
The spin waves in single crystals of the layered van der Waals antiferromagnet CoPS3 have been measured using inelastic neutron scattering. The data show four distinct spin wave branches with large (>14 meV) energy gaps at the Brillouin zone center indicat ...
AMER PHYSICAL SOC2023
, , , ,
Realand imaginary -time quantum state evolutions are crucial in physics and chemistry for exploring quantum dynamics, preparing ground states, and computing thermodynamic observables. On near -term devices, variational quantum time evolution is a promising ...