Erythrocyte fragility refers to the propensity of erythrocytes (red blood cells, RBC) to hemolyse (rupture) under stress. It can be thought of as the degree or proportion of hemolysis that occurs when a sample of red blood cells are subjected to stress (typically physical stress, and most commonly osmotic and/or mechanical stress). Depending on the application as well as the kind of fragility involved, the amount of stress applied and/or the significance of the resultant hemolysis may vary.
When multiple levels of stress are applied to a given population/sample of cells, a fragility profile can be obtained by measuring the relative or absolute extent of hemolysis existing at each such level, in addition to finding one or more single-number indexes (either measured directly or interpolated) associated with particular respective levels of hemolysis and/or corresponding stress. Fragility testing can be useful to assess cells' ability (or lack thereof) to withstand sustained or repeated stress. Moreover, it can be used to assess how fragility itself varies under different or changing environmental or stress conditions, during or prior to the inducement of the hemolysis. Low fragility is often termed "stability," though technically stability refers to cells' resistance to both stress-induced lysis and spontaneous auto-lysis.
Osmotic fragility (OF) refers to the degree or proportion of hemolysis that occurs when a sample of red blood cells are subjected to osmotic stress by being placed in a hypotonic solution. Osmotic fragility is affected by various factors, including membrane composition and integrity as well as the cells' sizes or surface-area-to-volume ratios.
The osmotic fragility test is common in hematology, and is often performed to aid with diagnosis of diseases associated with RBC membrane abnormalities. Some diseases linked to increased OF include hereditary spherocytosis and hypernatremia, while some linked to decreased OF include chronic liver disease, iron deficiency anemia, thalassemia, hyponatremia, polycythemia vera, hereditary xerocytosis, and sickle cell anemia after splenectomy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Erythrocyte deformability refers to the ability of erythrocytes (red blood cells, RBC) to change shape under a given level of applied stress, without hemolysing (rupturing). This is an important property because erythrocytes must change their shape extensively under the influence of mechanical forces in fluid flow or while passing through microcirculation. The extent and geometry of this shape change can be affected by the mechanical properties of the erythrocytes, the magnitude of the applied forces, and the orientation of erythrocytes with the applied forces.
A blood bank is a center where blood gathered as a result of blood donation is stored and preserved for later use in blood transfusion. The term "blood bank" typically refers to a department of a hospital usually within a Clinical Pathology laboratory where the storage of blood product occurs and where pre-transfusion and Blood compatibility testing is performed. However, it sometimes refers to a collection center, and some hospitals also perform collection.
Blood transfusion is the process of transferring blood products into a person's circulation intravenously. Transfusions are used for various medical conditions to replace lost components of the blood. Early transfusions used whole blood, but modern medical practice commonly uses only components of the blood, such as red blood cells, white blood cells, plasma, platelets, and other clotting factors. Red blood cells (RBC) contain hemoglobin, and supply the cells of the body with oxygen.
Background - Thequalityof red blood cells (RBCs) stored in red cell concentrates (RCCs) is influenced by processing, storage and donor characteristics, and can have a clinical impact on transfused patients. To evaluate RBC properties and their potential im ...
Simtipro Srl2023
, , , ,
An increase of oxygen saturation within blood bags and metabolic dysregulation occur during storage of red blood cells (RBCs). It leads to the gradual exhaustion of RBC antioxidant protective system and, consequently, to a deleterious state of oxidative s ...
A number of viruses causing sexually transmissible diseases are transmitted via mammalian seminal plasma. Several components of seminal plasma have been shown to influence those viruses and their physiological impact. To unravel whether components of semin ...