Summary
In mathematics, Maschke's theorem, named after Heinrich Maschke, is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make general conclusions about representations of a finite group G without actually computing them. It reduces the task of classifying all representations to a more manageable task of classifying irreducible representations, since when the theorem applies, any representation is a direct sum of irreducible pieces (constituents). Moreover, it follows from the Jordan–Hölder theorem that, while the decomposition into a direct sum of irreducible subrepresentations may not be unique, the irreducible pieces have well-defined multiplicities. In particular, a representation of a finite group over a field of characteristic zero is determined up to isomorphism by its character. Maschke's theorem addresses the question: when is a general (finite-dimensional) representation built from irreducible subrepresentations using the direct sum operation? This question (and its answer) are formulated differently for different perspectives on group representation theory. Maschke's theorem is commonly formulated as a corollary to the following result: Then the corollary is The vector space of complex-valued class functions of a group has a natural -invariant inner product structure, described in the article Schur orthogonality relations. Maschke's theorem was originally proved for the case of representations over by constructing as the orthogonal complement of under this inner product. One of the approaches to representations of finite groups is through module theory. Representations of a group are replaced by modules over its group algebra (to be precise, there is an isomorphism of categories between and , the of ). Irreducible representations correspond to simple modules.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
Related lectures (15)
Completely Reducible Representations
Covers completely reducible representations, simple modules, semisimple modules, and G-stable submodules.
Properties of Finite Dimensional Algebras
Covers the properties of finite dimensional algebras and non-semisimple representations.
Group Algebra: Maschke's Theorem
Explores Wedderburn's theorem, group algebras, and Maschke's theorem in the context of finite dimensional simple algebras and their endomorphisms.
Show more
Related publications (8)

Irvsp: To obtain irreducible representations of electronic states in the VASP

Quansheng Wu, Ziyi Wang

We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) ...
ELSEVIER2021

Linear Flavour-Wave Theory of SU(N) Lattice Models with Arbitrary Irreducible Representations

Francisco Hyunkyu Kim

This thesis explores various approaches of studying the long-range colour order of antiferromagnetic SU(N) Heisenberg models with the linear flavour-wave theory (LFWT). The LFWT is an extension of the well-known SU(2) spin-wave theory to SU(N), and this se ...
EPFL2019
Show more
Related concepts (16)
Semisimple representation
In mathematics, specifically in representation theory, a semisimple representation (also called a completely reducible representation) is a linear representation of a group or an algebra that is a direct sum of simple representations (also called irreducible representations). It is an example of the general mathematical notion of semisimplicity. Many representations that appear in applications of representation theory are semisimple or can be approximated by semisimple representations.
Class function
In mathematics, especially in the fields of group theory and representation theory of groups, a class function is a function on a group G that is constant on the conjugacy classes of G. In other words, it is invariant under the conjugation map on G. Such functions play a basic role in representation theory. The character of a linear representation of G over a field K is always a class function with values in K. The class functions form the center of the group ring K[G]. Here a class function f is identified with the element .
Semisimple module
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient.
Show more