Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term parsing comes from Latin pars (orationis), meaning part (of speech).
The term has slightly different meanings in different branches of linguistics and computer science. Traditional sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams. It usually emphasizes the importance of grammatical divisions such as subject and predicate.
Within computational linguistics the term is used to refer to the formal analysis by a computer of a sentence or other string of words into its constituents, resulting in a parse tree showing their syntactic relation to each other, which may also contain semantic and other information (p-values). Some parsing algorithms may generate a parse forest or list of parse trees for a syntactically ambiguous input.
The term is also used in psycholinguistics when describing language comprehension. In this context, parsing refers to the way that human beings analyze a sentence or phrase (in spoken language or text) "in terms of grammatical constituents, identifying the parts of speech, syntactic relations, etc." This term is especially common when discussing which linguistic cues help speakers interpret garden-path sentences.
Within computer science, the term is used in the analysis of computer languages, referring to the syntactic analysis of the input code into its component parts in order to facilitate the writing of compilers and interpreters. The term may also be used to describe a split or separation.
Natural language parsing
The traditional grammatical exercise of parsing, sometimes known as clause analysis, involves breaking down a text into its component parts of speech with an explanation of the form, function, and syntactic relationship of each part.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The objective of this course is to present the main models, formalisms and algorithms necessary for the development of applications in the field of natural language information processing. The concept
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
In computer science, a chart parser is a type of parser suitable for ambiguous grammars (including grammars of natural languages). It uses the dynamic programming approach—partial hypothesized results are stored in a structure called a chart and can be re-used. This eliminates backtracking and prevents a combinatorial explosion. Chart parsing is generally credited to Martin Kay. A common approach is to use a variant of the Viterbi algorithm. The Earley parser is a type of chart parser mainly used for parsing in computational linguistics, named for its inventor.
A parse tree or parsing tree or derivation tree or concrete syntax tree is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term syntax tree is more common. Concrete syntax trees reflect the syntax of the input language, making them distinct from the abstract syntax trees used in computer programming.
In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics.
As a universal expression of human creativity, music is capable of conveying great subtlety and complexity. Crucially, this complexity is not encoded in the score or in the sounds, but is rather construed in the mind of the listener in the form of nuanced ...
We present syntax rewriting rules that translate Scala 2 code into Scala 3. Two major syntactic changes are introduced: new control structure syntax and significant indentation. We describe the design and the implementation of these rules and evaluate thei ...
Music can be interpreted by attributing syntactic relationships to sequential musical events, and, computationally, such musical interpretation represents an analogous combinatorial task to syntactic processing in language. While this perspective has been ...