In information technology a reasoning system is a software system that generates conclusions from available knowledge using logical techniques such as deduction and induction. Reasoning systems play an important role in the implementation of artificial intelligence and knowledge-based systems.
By the everyday usage definition of the phrase, all computer systems are reasoning systems in that they all automate some type of logic or decision. In typical use in the Information Technology field however, the phrase is usually reserved for systems that perform more complex kinds of reasoning. For example, not for systems that do fairly straightforward types of reasoning such as calculating a sales tax or customer discount but making logical inferences about a medical diagnosis or mathematical theorem. Reasoning systems come in two modes: interactive and batch processing. Interactive systems interface with the user to ask clarifying questions or otherwise allow the user to guide the reasoning process. Batch systems take in all the available information at once and generate the best answer possible without user feedback or guidance.
Reasoning systems have a wide field of application that includes scheduling, business rule processing, problem solving, complex event processing, intrusion detection, predictive analytics, robotics, computer vision, and natural language processing.
The first reasoning systems were theorem provers, systems that represent axioms and statements in First Order Logic and then use rules of logic such as modus ponens to infer new statements. Another early type of reasoning system were general problem solvers. These were systems such as the General Problem Solver designed by Newell and Simon. General problem solvers attempted to provide a generic planning engine that could represent and solve structured problems. They worked by decomposing problems into smaller more manageable sub-problems, solving each sub-problem and assembling the partial answers into one final answer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
Gas path fault diagnosis of a gas turbine is a complex task involving field data analysis and knowledge-based reasoning. In this paper, a data-knowledge hybrid driven method for gas path fault diagnosis is proposed by integrating a physical model-based gas ...
With the increasing complexity of engineered systems, digital twins (DTs) have been widely used to support integrated modeling, simulation, and decision-making of the system of systems (SoS). However, when integrating DTs of each constituent system, it is ...
A knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.
Frames are an artificial intelligence data structure used to divide knowledge into substructures by representing "stereotyped situations". They were proposed by Marvin Minsky in his 1974 article "A Framework for Representing Knowledge". Frames are the primary data structure used in artificial intelligence frame languages; they are stored as ontologies of sets. Frames are also an extensive part of knowledge representation and reasoning schemes. They were originally derived from semantic networks and are therefore part of structure-based knowledge representations.
In artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software.
The recent advance of large language models (LLMs) demonstrates that these large-scale foundation models achieve remarkable capabilities across a wide range of language tasks and domains. The success of the statistical learning approach challenges our unde ...