Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. The instantaneous phase (also known as local phase or simply phase) of a complex-valued function s(t), is the real-valued function: where arg is the complex argument function. The instantaneous frequency is the temporal rate of change of the instantaneous phase. And for a real-valued function s(t), it is determined from the function's analytic representation, sa(t): where represents the Hilbert transform of s(t). When φ(t) is constrained to its principal value, either the interval or , it is called wrapped phase. Otherwise it is called unwrapped phase, which is a continuous function of argument t, assuming sa(t) is a continuous function of t. Unless otherwise indicated, the continuous form should be inferred. where ω > 0. In this simple sinusoidal example, the constant θ is also commonly referred to as phase or phase offset. φ(t) is a function of time; θ is not. In the next example, we also see that the phase offset of a real-valued sinusoid is ambiguous unless a reference (sin or cos) is specified. φ(t) is unambiguously defined. where ω > 0. In both examples the local maxima of s(t) correspond to φ(t) = 2piN for integer values of N. This has applications in the field of computer vision. Instantaneous angular frequency is defined as: and instantaneous (ordinary) frequency is defined as: where φ(t) must be the unwrapped phase; otherwise, if φ(t) is wrapped, discontinuities in φ(t) will result in Dirac delta impulses in f(t). The inverse operation, which always unwraps phase, is: This instantaneous frequency, ω(t), can be derived directly from the real and imaginary parts of sa(t), instead of the complex arg without concern of phase unwrapping. 2m1pi and m2pi are the integer multiples of pi necessary to add to unwrap the phase.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.