Concept

Holomorphic functional calculus

Summary
In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators. This article will discuss the case where T is a bounded linear operator on some Banach space. In particular, T can be a square matrix with complex entries, a case which will be used to illustrate functional calculus and provide some heuristic insights for the assumptions involved in the general construction. In this section T will be assumed to be a n × n matrix with complex entries. If a given function f is of certain special type, there are natural ways of defining f(T). For instance, if is a complex polynomial, one can simply substitute T for z and define where T0 = I, the identity matrix. This is the polynomial functional calculus. It is a homomorphism from the ring of polynomials to the ring of n × n matrices. Extending slightly from the polynomials, if f : C → C is holomorphic everywhere, i.e. an entire function, with MacLaurin series mimicking the polynomial case suggests we define Since the MacLaurin series converges everywhere, the above series will converge, in a chosen operator norm. An example of this is the exponential of a matrix. Replacing z by T in the MacLaurin series of f(z) = ez gives The requirement that the MacLaurin series of f converges everywhere can be relaxed somewhat. From above it is evident that all that is really needed is the radius of convergence of the MacLaurin series be greater than ǁTǁ, the operator norm of T. This enlarges somewhat the family of f for which f(T) can be defined using the above approach. However it is not quite satisfactory.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.