Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, et plus précisément en analyse, le calcul fonctionnel holomorphe désigne l'application du calcul fonctionnel aux fonctions holomorphes, c'est-à-dire qu'étant donnés une fonction holomorphe ƒ de la variable complexe z et un opérateur linéaire T, l'objectif est de construire un opérateur f (T) étendant ƒ de manière « naturelle ». Le cas le plus fréquent est celui où T est un opérateur borné sur un espace de Banach. En particulier, en dimension finie, T peut être identifié à une matrice carrée à coefficients complexes ; ce cas permet d'illustrer les idées du calcul fonctionnel, et sert souvent de motivation heuristique aux techniques d'analyse d'opérateurs plus généraux calcul fonctionnel On suppose dans cette section que T est une matrice carrée n × n à coefficients complexes. Pour certaines fonctions simples f, il y a des façons naturelles de définir f (T). Par exemple, si est un polynôme à coefficients complexes, il suffit de remplacer z par T pour définir , où T0 = I, la matrice identité (d'ordre n). C'est le calcul fonctionnel polynomial, définissant un homomorphisme de l'algèbre des polynômes vers l'algèbre des matrices n × n. Ce cas se généralise sans difficulté à celui d'une fonction partout holomorphe, c'est-à-dire à une fonction entière, pour laquelle la série de Taylor a un rayon de convergence infini. Dans ce cas, en effet, définissant , cette série convergera (plus généralement, elle convergera normalement si T est un opérateur borné pour la norme utilisée). Un exemple important est le cas de l'application exponentielle, et en particulier de l'exponentielle de matrice. On obtient (prenant pour f la fonction exponentielle usuelle) Il n'est pas vraiment nécessaire que la série de Taylor de f converge partout ; il est clair qu'il suffit que son rayon de convergence soit supérieur à la norme d'opérateur de T. Bien que cela permet d'étendre la classe des fonctions f pour lesquelles on peut définir f (T), cela est loin d'être suffisant dans tous les cas.