Concept

Formal concept analysis

Summary
In information science, formal concept analysis (FCA) is a principled way of deriving a concept hierarchy or formal ontology from a collection of objects and their properties. Each concept in the hierarchy represents the objects sharing some set of properties; and each sub-concept in the hierarchy represents a subset of the objects (as well as a superset of the properties) in the concepts above it. The term was introduced by Rudolf Wille in 1981, and builds on the mathematical theory of lattices and ordered sets that was developed by Garrett Birkhoff and others in the 1930s. Formal concept analysis finds practical application in fields including data mining, text mining, machine learning, knowledge management, semantic web, software development, chemistry and biology. The original motivation of formal concept analysis was the search for real-world meaning of mathematical order theory. One such possibility of very general nature is that data tables can be transformed into algebraic structures called complete lattices, and that these can be utilized for data visualization and interpretation. A data table that represents a heterogeneous relation between objects and attributes, tabulating pairs of the form "object g has attribute m", is considered as a basic data type. It is referred to as a formal context. In this theory, a formal concept is defined to be a pair (A, B), where A is a set of objects (called the extent) and B is a set of attributes (the intent) such that the extent A consists of all objects that share the attributes in B, and dually the intent B consists of all attributes shared by the objects in A. In this way, formal concept analysis formalizes the semantic notions of extension and intension. The formal concepts of any formal context can—as explained below—be ordered in a hierarchy called more formally the context's "concept lattice". The concept lattice can be graphically visualized as a "line diagram", which then may be helpful for understanding the data. Often however these lattices get too large for visualization.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.