This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.
Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields. Of those, only the complex numbers are algebraically closed; over any other K the existence of points of V with coordinates in K is something to be proved and studied as an extra topic, even knowing the geometry of V.
Arithmetic geometry can be more generally defined as the study of schemes of finite type over the spectrum of the ring of integers. Arithmetic geometry has also been defined as the application of the techniques of algebraic geometry to problems in number theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper . The idea itself is attributed to Lang's advisor Emil Artin.
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Serge Lang (lɑ̃ɡ; May 19, 1927 – September 12, 2005) was a French-American mathematician and activist who taught at Yale University for most of his career. He is known for his work in number theory and for his mathematics textbooks, including the influential Algebra. He received the Frank Nelson Cole Prize in 1960 and was a member of the Bourbaki group. As an activist, Lang campaigned against the Vietnam War, and also successfully fought against the nomination of the political scientist Samuel P.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
Explores classic regulator systems, polynomial degrees of freedom, servo model modifications, and system adjustment through simplification and zero invoicing.
We formulate a conjecture about the distribution of the canonical height of the lowest non-torsion rational point on a quadratic twist of a given elliptic curve, as the twist varies. This conjecture seems to be very deep and we can prove only partial resul ...
We introduce the N×N random matrices Xj,k=exp(2πi∑q=1dωj,qkq)with {ωj,q}1≤j≤N1≤q≤d i.i.d. random variables, and d a fixed integer. We pr ...
2020
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...