H∞ (i.e. "H-infinity") methods are used in control theory to synthesize controllers to achieve stabilization with guaranteed performance. To use H∞ methods, a control designer expresses the control problem as a mathematical optimization problem and then finds the controller that solves this optimization. H∞ techniques have the advantage over classical control techniques in that H∞ techniques are readily applicable to problems involving multivariate systems with cross-coupling between channels; disadvantages of H∞ techniques include the level of mathematical understanding needed to apply them successfully and the need for a reasonably good model of the system to be controlled. It is important to keep in mind that the resulting controller is only optimal with respect to the prescribed cost function and does not necessarily represent the best controller in terms of the usual performance measures used to evaluate controllers such as settling time, energy expended, etc. Also, non-linear constraints such as saturation are generally not well-handled. These methods were introduced into control theory in the late 1970s-early 1980s
by George Zames (sensitivity minimization), J. William Helton (broadband matching),
and Allen Tannenbaum (gain margin optimization).
The phrase H∞ control comes from the name of the mathematical space over which the optimization takes place: H∞ is the Hardy space of matrix-valued functions that are analytic and bounded in the open right-half of the complex plane defined by Re(s) > 0; the H∞ norm is the maximum singular value of the function over that space. (This can be interpreted as a maximum gain in any direction and at any frequency; for SISO systems, this is effectively the maximum magnitude of the frequency response.) H∞ techniques can be used to minimize the closed loop impact of a perturbation: depending on the problem formulation, the impact will either be measured in terms of stabilization or performance.
Simultaneously optimizing robust performance and robust stabilization is difficult.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be given to discrete-
This course covers some theoretical and practical aspects of robust and adaptive control. This includes H-2 and H-infinity control in model-based and data-driven framework by convex optimization, dire
Ce cours inclut la modélisation et l'analyse de systèmes dynamiques, l'introduction des principes de base et l'analyse de systèmes en rétroaction, la synthèse de régulateurs dans le domain fréquentiel
Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required.
Modern control synthesis methods rely on accurate models to derive a performant controller. Obtaining a good model is often a costly step, and has led to a renewed interest in data-driven synthesis methods. Frequency-response-based synthesis methods have b ...
2024
, ,
The paper presents a robust data-driven controller synthesis method for generalised multi-input multioutput (MIMO) systems. Using the frequency response of a linear time-invariant (LTI) MIMO system and characterising perturbations through Integral Quadrati ...
2024
, ,
We study the problem of performance optimization of closed -loop control systems with unmodeled dynamics. Bayesian optimization (BO) has been demonstrated to be effective for improving closed -loop performance by automatically tuning controller gains or re ...