A moss bioreactor is a photobioreactor used for the cultivation and propagation of mosses. It is usually used in molecular farming for the production of recombinant protein using transgenic moss. In environmental science moss bioreactors are used to multiply peat mosses e.g. by the Mossclone consortium to monitor air pollution.
Moss is a very frugal photoautotrophic organism that has been kept in vitro for research purposes since the beginning of the 20th century.
The first moss bioreactors for the model organism Physcomitrella patens were developed in the 1990s to comply with the safety standards regarding the handling of genetically modified organisms and to gain sufficient biomass for experimental purposes.
The moss bioreactor is used to cultivate moss in a suspension culture in agitated, and aerated liquid medium. The culture is kept under lighting with temperature and pH value held constant. The culture medium—often a minimal medium—contains all nutrients and minerals needed for growth of the moss.
To ensure a maximum growth rate, the moss is kept at the protonema stage by continuous mechanical disruption, e.g. by using rotating blades. Once the density of the culture has reached a certain threshold, the lack of nutrients and the increasing concentration of phytohormones in the medium triggers the differentiation of the protonema to the adult gametophyte. At this point the culture has to be diluted with fresh medium if it is intended for further use.
According to the intended yield, this basic principle can be adapted to various types and sizes of bioreactors. The cultivation chamber can, for example, consist of a column, a tube, or exchangeable plastic bags.
Various biopharmaceuticals have already been produced using moss bioreactors. Ideally, the recombinant protein can be directly purified from the culture medium. One example for this production method is factor H: this molecule is part of the human complement system. Defects in the corresponding gene are associated with human diseases such as severe kidney and retinal disorders.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
The course of Bioreactor modeling and simulation focuses on the principles of algorithmic design and analysis of
biochemical reactors. The application of these designed reactors would be in the produc
This course aims at a more advanced coverage of the basic aspects discussed in module ChE-311. It is however of a stand-alone nature, and even students who have little knowledge on - but a keen intere
A bioreactor refers to any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical process is carried out which involves organisms or biochemically active substances derived from such organisms. This process can either be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from litres to cubic metres, and are often made of stainless steel. It may also refer to a device or system designed to grow cells or tissues in the context of cell culture.
In this study, mixed culture (microalgae:activated sludge) of a photobioreactor (PBR) were investigated at different inoculation ratios (1:0, 9:1, 3:1, 1:1, 0:1 wt/wt). This work was not only to determine the optimal ratio for pollutant remediation and bio ...
The process of anaerobic digestion is a common application in the treatment of industrial and communal wastewater treatment plants. The biochemical reactions taking place inside the fermenter can be described by a system of first order differential equatio ...
Elsevier Science Sa2013
, , , , ,
Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred-tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer ra ...