In information science, an upper ontology (also known as a top-level ontology, upper model, or foundation ontology) is an ontology (in the sense used in information science) which consists of very general terms (such as "object", "property", "relation") that are common across all domains. An important function of an upper ontology is to support broad semantic interoperability among a large number of domain-specific ontologies by providing a common starting point for the formulation of definitions. Terms in the domain ontology are ranked under the terms in the upper ontology, e.g., the upper ontology classes are superclasses or supersets of all the classes in the domain ontologies.
A number of upper ontologies have been proposed, each with its own proponents.
Library classification systems predate upper ontology systems. Though library classifications organize and categorize knowledge using general concepts that are the same across all knowledge domains, neither system is a replacement for the other.
Any standard foundational ontology is likely to be contested among different groups, each with its own idea of "what exists". One factor exacerbating the failure to arrive at a common approach has been the lack of open-source applications that would permit the testing of different ontologies in the same computational environment. The differences have thus been debated largely on theoretical grounds, or are merely the result of personal preferences. Foundational ontologies can however be compared on the basis of adoption for the purposes of supporting interoperability across domain ontologies.
No particular upper ontology has yet gained widespread acceptance as a de facto standard. Different organizations have attempted to define standards for specific domains. The 'Process Specification Language' (PSL) created by the National Institute of Standards and Technology (NIST) is one example.
Another important factor leading to the absence of wide adoption of any existing upper ontology is the complexity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course, taught by experts from the Swiss CAT+ West Hub, students will be introduced to key concepts in automation and data-driven chemistry. Using real-world cases, students will learn the the
Software agents are widely used to control physical, economic and financial processes. The course presents practical methods for implementing software agents and multi-agent systems, supported by prog
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
In information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject. Every academic discipline or field creates ontologies to limit complexity and organize data into information and knowledge.
WordNet is a lexical database of semantic relations between words that links words into semantic relations including synonyms, hyponyms, and meronyms. The synonyms are grouped into synsets with short definitions and usage examples. It can thus be seen as a combination and extension of a dictionary and thesaurus. While it is accessible to human users via a web browser, its primary use is in automatic text analysis and artificial intelligence applications.
A semantic network, or frame network is a knowledge base that represents semantic relations between concepts in a network. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent semantic relations between concepts, mapping or connecting semantic fields. A semantic network may be instantiated as, for example, a graph database or a concept map. Typical standardized semantic networks are expressed as semantic triples.
Delves into the relationship between architecture, landscape, and territory, exploring critical reviews of architectural projects and the concept of ruins.
Traditional martial arts are treasures of humanity's knowledge and critical carriers of sociocultural memories throughout history. However, such treasured practices have encountered various challenges in knowledge transmission and now feature many entries ...
Metal Forming is a basic and essential industrial process to provide materials for constructing complex products. To design an efficient metal forming process, the functional requirements and operational performance are two important aspects to be consider ...
Industrial information integration engineering (IIIE) is an interdisciplinary field to facilitate the industrial information integration process. In the age of complex and large-scale systems, model-based systems engineering (MBSE) is widely adopted in ind ...