A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.
Substations may be owned and operated by an electrical utility, or may be owned by a large industrial or commercial customer. Generally substations are unattended, relying on SCADA for remote supervision and control.
The word substation comes from the days before the distribution system became a grid. As central generation stations became larger, smaller generating plants were converted to distribution stations, receiving their energy supply from a larger plant instead of using their own generators. The first substations were connected to only one power station, where the generators were housed, and were subsidiaries of that power station.
Substations may be described by their voltage class, their applications within the power system, the method used to insulate most connections, and by the style and materials of the structures used. These categories are not disjointed; for example, to solve a particular problem, a transmission substation may include significant distribution functions.
A transmission substation connects two or more transmission lines. The simplest case is where all transmission lines have the same voltage. In such cases, substation contains high-voltage switches that allow lines to be connected or isolated for fault clearance or maintenance.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les concepts de base permettant de comprendre et d'analyser les systèmes électroniques dédiés à l'acquisition et au traitement des signaux (signaux physiologique, bio-capteurs) seront abordés en théor
Les concepts de base permettant de comprendre, d'analyser et de concevoir les circuits à base d'AmpliOp, dédiés à l'acquisition et conditionnement des signaux analogiques sont traités en théorie et pr
Ce cours décrit les composants d'un réseau électrique. Il explique le fonctionnement des réseaux électriques et leurs limites d'utilisation. Il introduit les outils de base permettant de les piloter.
An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of: power stations: often located near energy and away from heavily populated areas electrical substations to step voltage up or down electric power transmission to carry power long distances electric power distribution to individual customers, where voltage is stepped down again to the required service voltage(s).
Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2kV and 33kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises.
A static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. SVCs are part of the flexible AC transmission system device family, regulating voltage, power factor, harmonics and stabilizing the system. A static VAR compensator has no significant moving parts (other than internal switchgear). Prior to the invention of the SVC, power factor compensation was the preserve of large rotating machines such as synchronous condensers or switched capacitor banks.
This work presents an optimization framework to aggregate the power and energy flexibilities in an interconnected power distribution systems. The aggregation framework is used to compute the day-ahead dispatch plans of multiple and interconnected distribut ...
2022
, , , ,
AC/DC power distribution networks use various types of power converters to interconnect their buses, active front ends between AC and DC buses, and DC transformers between DC buses. Different active front end control methods, like voltage or power regulati ...
VDE Verlag2023
,
The latest developments in dc transformer technology are enabling larger and more complex dc power distribution systems. However, the literature is scarce regarding the investigation and quantification of its impact on the dc grid. Therefore, this paper an ...