Summary
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. Heat is not necessarily applied externally, but is often generated by the reaction of the resin with a curing agent (catalyst, hardener). Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network. The starting material for making thermosets is usually malleable or liquid prior to curing, and is often designed to be molded into the final shape. It may also be used as an adhesive. Once hardened, a thermoset cannot be melted for reshaping, in contrast to thermoplastic polymers which are commonly produced and distributed in the form of pellets, and shaped into the final product form by melting, pressing, or injection molding. Curing a thermosetting resin transforms it into a plastic, or elastomer (rubber) by crosslinking or chain extension through the formation of covalent bonds between individual chains of the polymer. Crosslink density varies depending on the monomer or prepolymer mix, and the mechanism of crosslinking: Acrylic resins, polyesters and vinyl esters with unsaturated sites at the ends or on the backbone are generally linked by copolymerisation with unsaturated monomer diluents, with cure initiated by free radicals generated from ionizing radiation or by the photolytic or thermal decomposition of a radical initiator – the intensity of crosslinking is influenced by the degree of backbone unsaturation in the prepolymer; Epoxy functional resins can be homo-polymerized with anionic or cationic catalysts and heat, or copolymerised through nucleophilic addition reactions with multifunctional crosslinking agents which are also known as curing agents or hardeners.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.