A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers. It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the effective refractive index in the guide. Each layer boundary causes a partial reflection and refraction of an optical wave. For waves whose vacuum wavelength is close to four times the optical thickness of the layers, the interaction between these beams generates constructive interference, and the layers act as a high-quality reflector. The range of wavelengths that are reflected is called the photonic stopband. Within this range of wavelengths, light is "forbidden" to propagate in the structure.
The DBR's reflectivity, , for intensity is approximately given by
where and are the respective refractive indices of the originating medium, the two alternating materials, and the terminating medium (i.e. backing or substrate); and is the number of repeated pairs of low/high refractive index material. This formula assumes the repeated pairs all have a quarter-wave thickness (that is , where is the refractive index of the layer, is the thickness of the layer, and is the wavelength of the light).
The frequency bandwidth of the photonic stop-band can be calculated by
where is the central frequency of the band. This configuration gives the largest possible ratio that can be achieved with these two values of the refractive index.
Increasing the number of pairs in a DBR increases the mirror reflectivity and increasing the refractive index contrast between the materials in the Bragg pairs increases both the reflectivity and the bandwidth. A common choice of materials for the stack is titanium dioxide (n ≈ 2.5) and silica (n ≈ 1.5). Substituting into the formula above gives a bandwidth of about 200 nm for 630 nm light.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Series of lectures covering the physics of quantum heterostructures (including quantum dots), microcavities and photonic crystal cavities as well as the properties of the main light emitting devices t
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables.
A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices (crystal structure) of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction. Driven by voltage, the doped p–n-transition allows for recombination of an electron with a hole. Due to the drop of the electron from a higher energy level to a lower one, radiation, in the form of an emitted photon is generated. This is spontaneous emission.
Crystallization of amorphous layers has been demonstrated under various radically different laser-exposure conditions, including continuous wave (cw) and pulsed lasers. Here, we investigate the specific role of ionization in the crystallization of dielectr ...
For the EU DEMO conductor testing, a temperature sensor based on Fiber Bragg Grating (FBG) optical fiber is studied at the EPFL Swiss Plasma Center. The SULTAN test facility has been upgraded to use fiber optic sensor for temperature monitoring and quench ...
Piscataway2024
, , , ,
Ring resonators have proven to be extremely successful for generation of temporal dissipative Kerr solitons, but their dispersion engineering is limited. We present a photonic-crystal Fabry-Perot resonator with record-high quality factors in gallium phosph ...