Concept

Bianchi group

In mathematics, a Bianchi group is a group of the form where d is a positive square-free integer. Here, PSL denotes the projective special linear group and is the ring of integers of the imaginary quadratic field . The groups were first studied by as a natural class of discrete subgroups of , now termed Kleinian groups. As a subgroup of , a Bianchi group acts as orientation-preserving isometries of 3-dimensional hyperbolic space . The quotient space is a non-compact, hyperbolic 3-fold with finite volume, which is also called Bianchi orbifold. An exact formula for the volume, in terms of the Dedekind zeta function of the base field , was computed by Humbert as follows. Let be the discriminant of , and , the discontinuous action on , then The set of cusps of is in bijection with the class group of . It is well known that every non-cocompact arithmetic Kleinian group is weakly commensurable with a Bianchi group.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.