In mathematics, a Bianchi group is a group of the form
where d is a positive square-free integer. Here, PSL denotes the projective special linear group and is the ring of integers of the imaginary quadratic field .
The groups were first studied by as a natural class of discrete subgroups of , now termed Kleinian groups.
As a subgroup of , a Bianchi group acts as orientation-preserving isometries of 3-dimensional hyperbolic space . The quotient space is a non-compact, hyperbolic 3-fold with finite volume, which is also called Bianchi orbifold. An exact formula for the volume, in terms of the Dedekind zeta function of the base field , was computed by Humbert as follows. Let be the discriminant of , and , the discontinuous action on , then
The set of cusps of is in bijection with the class group of . It is well known that every non-cocompact arithmetic Kleinian group is weakly commensurable with a Bianchi group.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.
A decomposition of multicorrelation sequences for commuting transformations along primes, Discrete Analysis 2021:4, 27 pp. Szemerédi's theorem asserts that for every positive integer k and every δ>0 there exists n such that every subset of ${1, ...
Let Isom(H^n) be the group of isometries of the n-dimensional real hyperbolic space. We first classify all continuous non-elementary actions of on the infinite-dimensional real hyperbolic space. We then prove the existence of a continuous family of non-iso ...