In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent (denoted by ) if their are equivalent (denoted by ). It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.
Rings are commonly studied in terms of their modules, as modules can be viewed as representations of rings. Every ring R has a natural R-module structure on itself where the module action is defined as the multiplication in the ring, so the approach via modules is more general and gives useful information. Because of this, one often studies a ring by studying the of modules over that ring. Morita equivalence takes this viewpoint to a natural conclusion by defining rings to be Morita equivalent if their module categories are equivalent. This notion is of interest only when dealing with noncommutative rings, since it can be shown that two commutative rings are Morita equivalent if and only if they are isomorphic.
Two rings R and S (associative, with 1) are said to be (Morita) equivalent if there is an equivalence of the category of (left) modules over R, R-Mod, and the category of (left) modules over S, S-Mod. It can be shown that the left module categories R-Mod and S-Mod are equivalent if and only if the right module categories Mod-R and Mod-S are equivalent. Further it can be shown that any functor from R-Mod to S-Mod that yields an equivalence is automatically additive.
Any two isomorphic rings are Morita equivalent.
The ring of n-by-n matrices with elements in R, denoted Mn(R), is Morita-equivalent to R for any n > 0. Notice that this generalizes the classification of simple artinian rings given by Artin–Wedderburn theory. To see the equivalence, notice that if X is a left R-module then Xn is an Mn(R)-module where the module structure is given by matrix multiplication on the left of column vectors from X.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
In abstract algebra, a nonzero ring R is a prime ring if for any two elements a and b of R, arb = 0 for all r in R implies that either a = 0 or b = 0. This definition can be regarded as a simultaneous generalization of both integral domains and simple rings. Although this article discusses the above definition, prime ring may also refer to the minimal non-zero subring of a field, which is generated by its identity element 1, and determined by its characteristic.
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...
Let G be a simple linear algebraic group defined over an algebraically closed field of characteristic p ≥ 0 and let φ be a nontrivial p-restricted irreducible representation of G. Let T be a maximal torus of G and s ∈ T . We say that s is Ad-regular if α(s ...
We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...