Concept

Xeon Phi

Summary
Xeon Phi was a series of x86 manycore processors designed and made by Intel. It was intended for use in supercomputers, servers, and high-end workstations. Its architecture allowed use of standard programming languages and application programming interfaces (APIs) such as OpenMP. Xeon Phi launched in 2010. Since it was originally based on an earlier GPU design (codenamed "Larrabee") by Intel that was cancelled in 2009, it shared application areas with GPUs. The main difference between Xeon Phi and a GPGPU like Nvidia Tesla was that Xeon Phi, with an x86-compatible core, could, with less modification, run software that was originally targeted to a standard x86 CPU. Initially in the form of PCIe-based add-on cards, a second-generation product, codenamed Knights Landing, was announced in June 2013. These second-generation chips could be used as a standalone CPU, rather than just as an add-in card. In June 2013, the Tianhe-2 supercomputer at the National Supercomputer Center in Guangzhou (NSCC-GZ) was announced as the world's fastest supercomputer (, it is ). It used Intel Xeon Phi coprocessors and Ivy Bridge-EP Xeon processors to achieve 33.86 petaFLOPS. The Xeon Phi product line directly competed with Nvidia's Tesla and AMD Radeon Instinct lines of deep learning and GPGPU cards. It was discontinued due to a lack of demand and Intel's problems with its 10nm node. The Larrabee microarchitecture (in development since 2006) introduced very wide (512-bit) SIMD units to a x86 architecture based processor design, extended to a cache-coherent multiprocessor system connected via a ring bus to memory; each core was capable of four-way multithreading. Due to the design being intended for GPU as well as general purpose computing, the Larrabee chips also included specialised hardware for texture sampling. The project to produce a retail GPU product directly from the Larrabee research project was terminated in May 2010.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.