In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some such that for every we can find a point such that and . Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.
More general definitions of this kind of function can be obtained, by replacing the absolute value by the distance function in a metric space, or by using the definition of continuity in a topological space.
Dirichlet function
One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function. This function is denoted as and has domain and codomain both equal to the real numbers. By definition, is equal to if is a rational number and it is if otherwise.
More generally, if is any subset of a topological space such that both and the complement of are dense in then the real-valued function which takes the value on and on the complement of will be nowhere continuous. Functions of this type were originally investigated by Peter Gustav Lejeune Dirichlet.
Cauchy's functional equation
A function is called an if it satisfies Cauchy's functional equation:
For example, every map of form where is some constant, is additive (in fact, it is linear and continuous). Furthermore, every linear map is of this form (by taking ).
Although every linear map is additive, not all additive maps are linear. An additive map is linear if and only if there exists a point at which it is continuous, in which case it is continuous everywhere. Consequently, every non-linear additive function is discontinuous at every point of its domain.
Nevertheless, the restriction of any additive function to any real scalar multiple of the rational numbers is continuous; explicitly, this means that for every real the restriction to the set is a continuous function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Dirichlet function is the indicator function 1Q or of the set of rational numbers Q, i.e. 1Q(x) = 1 if x is a rational number and 1Q(x) = 0 if x is not a rational number (i.e. an irrational number). It is named after the mathematician Peter Gustav Lejeune Dirichlet. It is an example of pathological function which provides counterexamples to many situations. The Dirichlet function is nowhere continuous. Its restrictions to the set of rational numbers and to the set of irrational numbers are constants and therefore continuous.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
We study viscosity solutions to the classical one-phase problem and its thin counterpart. In low dimensions, we show that when the free boundary is the graph of a continuous function, the solution is the half-plane solution. This answers, in the salient di ...
Berlin2023
,
This letter investigates the universal approximation capabilities of Hamiltonian Deep Neural Networks (HDNNs) that arise from the discretization of Hamiltonian Neural Ordinary Differential Equations. Recently, it has been shown that HDNNs enjoy, by design, ...
The goal of this thesis is to study continuous-domain inverse problems for the reconstruction of sparse signals and to develop efficient algorithms to solve such problems computationally. The task is to recover a signal of interest as a continuous function ...