A knockout mouse, or knock-out mouse, is a genetically modified mouse (Mus musculus) in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are important animal models for studying the role of genes which have been sequenced but whose functions have not been determined. By causing a specific gene to be inactive in the mouse, and observing any differences from normal behaviour or physiology, researchers can infer its probable function.
Mice are currently the laboratory animal species most closely related to humans for which the knockout technique can easily be applied. They are widely used in knockout experiments, especially those investigating genetic questions that relate to human physiology. Gene knockout in rats is much harder and has only been possible since 2003.
The first recorded knockout mouse was created by Mario R. Capecchi, Martin Evans, and Oliver Smithies in 1989, for which they were awarded the 2007 Nobel Prize in Physiology or Medicine. Aspects of the technology for generating knockout mice, and the mice themselves have been patented in many countries by private companies.
Knocking out the activity of a gene provides information about what that gene normally does. Humans share many genes with mice. Consequently, observing the characteristics of knockout mice gives researchers information that can be used to better understand how a similar gene may cause or contribute to disease in humans.
Examples of research in which knockout mice have been useful include studying and modeling different kinds of cancer, obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and Parkinson's disease. Knockout mice also offer a biological and scientific context in which drugs and other therapies can be developed and tested.
Millions of knockout mice are used in experiments each year.
There are several thousand different strains of knockout mice.
Many mouse models are named after the gene that has been inactivated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA.
Gene knockouts (also known as gene deletion or gene inactivation) are a widely used genetic engineering technique that involves the targeted removal or inactivation of a specific gene within an organism's genome. This can be done through a variety of methods, including homologous recombination, CRISPR-Cas9, and TALENs. One of the main advantages of gene knockouts is that they allow researchers to study the function of a specific gene in vivo, and to understand the role of the gene in normal development and physiology as well as in the pathology of diseases.
A mouse (: mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (Mus musculus). Mice are also popular as pets. In some places, certain kinds of field mice are locally common. They are known to invade homes for food and shelter. Mice are typically distinguished from rats by their size. Generally, when a muroid rodent is discovered, its common name includes the term mouse if it is smaller, or rat if it is larger.
Explores the applications of CRISPR-Cas in genome editing, focusing on engineering bacterial genomes, curing genetic diseases, guide RNA simplicity, Cas9 specificity, DNA damage mechanisms, and base editing.
Delves into identifying drug targets, ensuring efficacy, and maintaining safety in medical chemistry, covering genetic tests, chirality, stereochemistry, drug resistance, and drug-likeness rules.
Explores the development and challenges of antibody-based therapeutics, including chimeric and humanized antibodies, alternative scaffolds, and in vitro selection.
Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported t ...
The serine proteases CAP1/Prss8 and CAP3/St14 are identified as ENaC channel-activating proteases in vitro, highly suggesting that they are required for proteolytic activation of ENaC in vivo. The present study tested whether CAP3/St14 is relevant for rena ...
The arms race between viruses and their hosts shaped the evolutionary history and the genome composition of both parties. Restriction factors are the first-line antiviral effectors encoded by the host genomes and are often conserved through evolution to pr ...