In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate):
In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.
It is equivalent to Euclid's parallel postulate in the context of Euclidean geometry and was named after the Scottish mathematician John Playfair. The "at most" clause is all that is needed since it can be proved from the remaining axioms that at least one parallel line exists. The statement is often written with the phrase, "there is one and only one parallel". In Euclid's Elements, two lines are said to be parallel if they never meet and other characterizations of parallel lines are not used.
This axiom is used not only in Euclidean geometry but also in the broader study of affine geometry where the concept of parallelism is central. In the affine geometry setting, the stronger form of Playfair's axiom (where "at most one" is replaced by "one and only one") is needed since the axioms of neutral geometry are not present to provide a proof of existence. Playfair's version of the axiom has become so popular that it is often referred to as Euclid's parallel axiom, even though it was not Euclid's version of the axiom.
Proclus (410–485 A.D.) clearly makes the statement in his commentary on Euclid I.31 (Book I, Proposition 31).
In 1785 William Ludlam expressed the parallel axiom as follows:
Two straight lines, meeting at a point, are not both parallel to a third line.
This brief expression of Euclidean parallelism was adopted by Playfair in his textbook Elements of Geometry (1795) that was republished often. He wrote
Two straight lines which intersect one another cannot be both parallel to the same straight line.
Playfair acknowledged Ludlam and others for simplifying the Euclidean assertion. In later developments the point of intersection of the two lines came first, and the denial of two parallels became expressed as a unique parallel through the given point.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores non-Euclidean geometries, including hyperbolic geometry and the tractricoid model, challenging Euclidean principles and introducing projective geometry.
In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles. As a consequence of Euclid's parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal.
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the whole space. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory, and graphing are performed in a two-dimensional or planar space.
In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: If a line segment intersects two straight lines forming two interior angles on the same side that are less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.
In this work, we consider four problems in the context of Internet traffic control. The first problem is to understand when and why a sender that implements an equation-based rate control would be TCP-friendly, or not—a sender is said to be TCP-friendly if ...
EPFL2003
In the paper methods for optimization of net algorithms describing concurrent processes are proposed. The depth of concurrency is modeled by the set of parallel statement pairs. The optimization is performed in two steps: first the execution time is minimi ...