Résumé
L’axiome d'Euclide, dit également cinquième postulat d’Euclide, est dû au savant grec Euclide (). C'est un axiome relatif à la géométrie du plan. La nécessité de cet axiome a constitué la question la plus lancinante de toute l'histoire de la géométrie, et il a fallu plus de deux millénaires de débats ininterrompus pour que la communauté scientifique reconnaisse l'impossibilité de le réduire au statut de simple théorème. vignette|Illustration de l'axiome d'Euclide : La droite S détermine les angles internes α et β avec les droites g et h. La somme de ces angles étant inférieure à deux droits, g et h se coupent « du côté de ces deux angles », c'est-à-dire à gauche de S sur la figure. L'énoncé original est exprimé dans le livre I des Éléments d'Euclide sous la forme suivante : « Si une droite tombant sur deux droites fait les angles intérieurs du même côté plus petits que deux droits, ces droites, prolongées à l'infini, se rencontreront du côté où les angles sont plus petits que deux droits. » (voir figure). En langage moderne, cela pourrait donner : « Si une droite coupe deux autres droites en déterminant deux angles internes dont la somme est différente de deux angles droits, alors les deux droites se coupent dans le demi-plan pour lequel la somme est inférieure à deux angles droits ». Euclide a présenté cette propriété comme un axiome : son cinquième postulat. lui-même doutait de savoir si son affirmation était ou non démontrable. Les raisons pour le penser sont autant le choix de la propriété dont l'énoncé est plutôt celui d'un « théorème indémontrable », que le fait qu'Euclide établit les 28 premières propositions de ses Éléments sans recourir à son fameux axiome, . De fait, pendant plus de deux millénaires, bien des géomètres ont pensé que cette propriété devait découler logiquement des autres postulats. Ils ont donc tenté de prouver l'axiome d'Euclide. Parmi les plus illustres de ces savants on citera : Comme la démonstration de l'axiome requerrait de le ramener à des évidences, d'autres énoncés plus ou moins équivalents au postulat d'Euclide ont résulté des meilleures de ces tentatives de démonstration.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.