Concept

Binary Golay code

Summary
In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory of finite sporadic groups in mathematics. These codes are named in honor of Marcel J. E. Golay whose 1949 paper introducing them has been called, by E. R. Berlekamp, the "best single published page" in coding theory. There are two closely related binary Golay codes. The extended binary Golay code, G24 (sometimes just called the "Golay code" in finite group theory) encodes 12 bits of data in a 24-bit word in such a way that any 3-bit errors can be corrected or any 7-bit errors can be detected. The other, the perfect binary Golay code, G23, has codewords of length 23 and is obtained from the extended binary Golay code by deleting one coordinate position (conversely, the extended binary Golay code is obtained from the perfect binary Golay code by adding a parity bit). In standard coding notation, the codes have parameters [24, 12, 8] and [23, 12, 7], corresponding to the length of the codewords, the dimension of the code, and the minimum Hamming distance between two codewords, respectively. In mathematical terms, the extended binary Golay code G24 consists of a 12-dimensional linear subspace W of the space V = F of 24-bit words such that any two distinct elements of W differ in at least 8 coordinates. W is called a linear code because it is a vector space. In all, W comprises 4096 = 212 elements. The elements of W are called code words. They can also be described as subsets of a set of 24 elements, where addition is defined as taking the symmetric difference of the subsets. In the extended binary Golay code, all code words have Hamming weights of 0, 8, 12, 16, or 24. Code words of weight 8 are called octads and code words of weight 12 are called dodecads. Octads of the code G24 are elements of the S(5,8,24) Steiner system. There are 759 = 3 × 11 × 23 octads and 759 complements thereof.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.