Design for manufacturability (also sometimes known as design for manufacturing or DFM) is the general engineering practice of designing products in such a way that they are easy to manufacture. The concept exists in almost all engineering disciplines, but the implementation differs widely depending on the manufacturing technology. DFM describes the process of designing or engineering a product in order to facilitate the manufacturing process in order to reduce its manufacturing costs. DFM will allow potential problems to be fixed in the design phase which is the least expensive place to address them. Other factors may affect the manufacturability such as the type of raw material, the form of the raw material, dimensional tolerances, and secondary processing such as finishing.
Depending on various types of manufacturing processes there are set guidelines for DFM practices. These DFM guidelines help to precisely define various tolerances, rules and common manufacturing checks related to DFM.
While DFM is applicable to the design process, a similar concept called DFSS (design for Six Sigma) is also practiced in many organizations.
In the PCB design process, DFM leads to a set of design guidelines that attempt to ensure manufacturability. By doing so, probable production problems may be addressed during the design stage.
Ideally, DFM guidelines take into account the processes and capabilities of the manufacturing industry. Therefore, DFM is constantly evolving.
As manufacturing companies evolve and automate more and more stages of the processes, these processes tend to become cheaper. DFM is usually used to reduce these costs. For example, if a process may be done automatically by machines (i.e. SMT component placement and soldering), such process is likely to be cheaper than doing so by hand.
Achieving high-yielding designs, in the state of the art VLSI technology has become an extremely challenging task due to the miniaturization as well as the complexity of leading-edge products.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Urban Wilds studio questions how architecture can participate in strengthening urban ecological networks through a critical revision of historically anthropocentric mapping and design methodologie
The Urban Wilds studio questions how architecture can participate in strengthening urban ecological networks through a critical revision of historically anthropocentric mapping and design methodologie
Digital IC Design presents the fundamentals of digital integrated circuit design. The methods and techniques aiming at the fabrication and development of digital integrated circuits are reviewed, the
Design for excellence (DfX or DFX) is a term and abbreviation used interchangeably in the existing literature, where the X in design for X is a variable which can have one of many possible values. In many fields (e.g., very-large-scale integration (VLSI) and nanoelectronics) X may represent several traits or features including: manufacturability, power, variability, cost, yield, or reliability. This gives rise to the terms design for manufacturability (DfM, DFM), design for inspection (DFI), design for variability (DfV), design for cost (DfC).
Herringbone grooved journal bearings (HGJBs) are widely used in micro-turbocompressor applications due to their high load-carrying capacity, low friction, and oil-free solution. However, the performance of these bearings is sensitive to manufacturing devia ...
This contribution situates the role of public media art, critical making and reappropriation techniques as sociopolitical vehicles for enhancing climate actions and awareness in contexts of technological inequalities and electronic waste in Accra, Ghana. O ...
Edible robotics is an emerging research field with potential use in environmental, food, and medical scenarios. In this context, the design of edible control circuits could increase the behavioral complexity of edible robots and reduce their dependence on ...