In optics, a caustic or caustic network is the envelope of light rays which have been reflected or refracted by a curved surface or object, or the projection of that envelope of rays on another surface. The caustic is a curve or surface to which each of the light rays is tangent, defining a boundary of an envelope of rays as a curve of concentrated light. Therefore, in the photo to the right, caustics can be seen as patches of light or their bright edges. These shapes often have cusp singularities.
Concentration of light, especially sunlight, can burn. The word caustic, in fact, comes from the Greek καυστός, burnt, via the Latin causticus, burning.
A common situation where caustics are visible is when light shines on a drinking glass. The glass casts a shadow, but also produces a curved region of bright light. In ideal circumstances (including perfectly parallel rays, as if from a point source at infinity), a nephroid-shaped patch of light can be produced. Rippling caustics are commonly formed when light shines through waves on a body of water.
Another familiar caustic is the rainbow. Scattering of light by raindrops causes different wavelengths of light to be refracted into arcs of differing radius, producing the bow.
In computer graphics, most modern rendering systems support caustics. Some of them even support volumetric caustics. This is accomplished by raytracing the possible paths of a light beam, accounting for the refraction and reflection. Photon mapping is one implementation of this. Volumetric caustics can also be achieved by volumetric path tracing. Some computer graphic systems work by "forward ray tracing" wherein photons are modeled as coming from a light source and bouncing around the environment according to rules. Caustics are formed in the regions where sufficient photons strike a surface causing it to be brighter than the average area in the scene. “Backward ray tracing” works in the reverse manner beginning at the surface and determining if there is a direct path to the light source.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers advanced 3D graphics techniques for realistic image synthesis. Students will learn how light interacts with objects in our world, and how to recreate these phenomena in a computer s
Computer graphics deals with generating s and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing.
In differential geometry, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in geometric optics. The ray's source may be a point (called the radiant) or parallel rays from a point at infinity, in which case a direction vector of the rays must be specified. More generally, especially as applied to symplectic geometry and singularity theory, a caustic is the critical value set of a Lagrangian mapping (π ○ i) : L ↪ M ↠ B; where i : L ↪ M is a Lagrangian immersion of a Lagrangian submanifold L into a symplectic manifold M, and π : M ↠ B is a Lagrangian fibration of the symplectic manifold M.
In computer graphics, photon mapping is a two-pass global illumination rendering algorithm developed by Henrik Wann Jensen between 1995 and 2001 that approximately solves the rendering equation for integrating light radiance at a given point in space. Rays from the light source (like photons) and rays from the camera are traced independently until some termination criterion is met, then they are connected in a second step to produce a radiance value.
Explores the challenges in achieving photorealistic rendering through ray tracing algorithms and discusses their limitations.
Covers the basics of ray tracing in computer graphics, explaining the generation of primary rays, intersection computations, and lighting models for diffuse and specular surfaces.
Explores parametric curves, focusing on finding envelopes and caustics.
The focus of our research is to generate controllable photo-realistic images of real-world scenes from existing observations, i.e., the inverse rendering problem. The approaches we focus on are those through neural rendering, utilizing neural network to de ...
Physically-based differentiable rendering has recently emerged as an attractive new technique for solving inverse problems that recover complete 3D scene representations from images. The inversion of shape parameters is of particular interest but also pose ...
ASSOC COMPUTING MACHINERY2022
We present GeoNeRF, a generalizable photorealistic novel view synthesis method based on neural radiance fields. Our approach consists of two main stages: a geometry reasoner and a renderer. To render a novel view, the geometry reasoner first constructs cas ...