In differential geometry, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in geometric optics. The ray's source may be a point (called the radiant) or parallel rays from a point at infinity, in which case a direction vector of the rays must be specified.
More generally, especially as applied to symplectic geometry and singularity theory, a caustic is the critical value set of a Lagrangian mapping (π ○ i) : L ↪ M ↠ B; where i : L ↪ M is a Lagrangian immersion of a Lagrangian submanifold L into a symplectic manifold M, and π : M ↠ B is a Lagrangian fibration of the symplectic manifold M. The caustic is a subset of the Lagrangian fibration's base space B.
Concentration of light, especially sunlight, can burn. The word caustic, in fact, comes from the Greek καυστός, burnt, via the Latin causticus, burning.
A common situation where caustics are visible is when light shines on a drinking glass. The glass casts a shadow, but also produces a curved region of bright light. In ideal circumstances (including perfectly parallel rays, as if from a point source at infinity), a nephroid-shaped patch of light can be produced. Rippling caustics are commonly formed when light shines through waves on a body of water.
Another familiar caustic is the rainbow. Scattering of light by raindrops causes different wavelengths of light to be refracted into arcs of differing radius, producing the bow.
A catacaustic is the reflective case.
With a radiant, it is the evolute of the orthotomic of the radiant.
The planar, parallel-source-rays case: suppose the direction vector is and the mirror curve is parametrised as . The normal vector at a point is ; the reflection of the direction vector is (normal needs special normalization)
Having components of found reflected vector treat it as a tangent
Using the simplest envelope form
which may be unaesthetic, but gives a linear system in and so it is elementary to obtain a parametrisation of the catacaustic. Cramer's rule would serve.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Une caustique désigne en optique et en mathématiques l'enveloppe des rayons lumineux subissant une réflexion ou une réfraction sur une surface ou une courbe. Plus spécifiquement, on parle de caustique « au flambeau » lorsque les rayons lumineux sont issus d'un point à distance finie et de caustique « au soleil » si la source lumineuse se trouve à une distance infinie. Une caustique par réflexion est aussi appelée « catacaustique », tandis qu'une caustique par réfraction est appelée « diacaustique ».
En géométrie différentielle, une famille de courbes planes possède fréquemment une courbe enveloppe. Celle-ci admet deux définitions géométriques traditionnelles, presque équivalentes : l'enveloppe est une courbe tangente à chacune des courbes de la famille ; elle est le lieu des points caractéristiques, points d'intersection de deux courbes infiniment proches. De façon plus précise, l'enveloppe possède une définition analytique, c'est l'ensemble des points critiques de l'application de projection associée à la famille de courbes.
The computation of caustics created by reflection or refraction of light is a well-studied problem in computer graphics. This paper investigates the inverse problem: Given a greyscale intensity image, find the shape of a surface that will cast a caustic th ...
Caustics are captivating light patterns created by materials focusing or diverting light by refraction or reflection. We know caustics as random side effects, appearing, for example, at the bottom of a swimming pool, or generated by many glass objects, lik ...
Caustics are captivating light patterns created by materials bundling or diverting light by refraction or reflection. We know caustics as random side effects, appearing, for example, at the bottom of a swimming pool. In this paper we show that it is possib ...