Le processus s est un ensemble de processus astrophysiques conduisant à la nucléosynthèse stellaire d'environ la moitié des éléments chimiques de numéro atomique supérieur à celui du fer, l'autre moitié étant produite par le et le . La lettre s signifie qu'il s'agit d'une capture neutronique lente (slow en anglais). Le se déroule typiquement dans les étoiles de la branche asymptotique des géantes en impliquant des températures et des flux de neutrons considérablement moindres que ceux nécessaires au , lequel se déroule lors des fusions d'étoiles à neutrons et dans les supernovae à effondrement de cœur. Au cours du , les nucléides subissent une capture neutronique pour former un nucléide contenant un nucléon de plus. Si ce dernier est un isotope stable, une capture neutronique supplémentaire peut générer un isotope encore plus lourd du même élément chimique. Si l'isotope produit est instable, une produit un élément dont le numéro atomique est incrémenté d'une unité. C'est un processus lent, d'où son nom, qui laisse le temps à ces désintégrations de se produire avant la capture du neutron suivant. Une succession de telles réactions produit des isotopes stables le long de la vallée de stabilité des isobares par désintégration β de la carte des nucléides. Une grande variété de nucléides est produite par le en combinaison avec des désintégrations α le long de la chaîne de réactions. L'abondance relative des éléments et isotopes produits dépend de l'intensité des flux de neutrons et des variations d'intensité de ces flux au cours du temps. Ces chaînes de réactions se terminent avec un cycle impliquant le plomb , le bismuth et le polonium . Le processus r produit des isotopes plus lourds et plus riches en neutrons que ceux produits par le ; ces deux processus expliquent l'essentiel de l'abondance relative des éléments chimiques plus lourds que le fer. Fichier:Nucleosynthesis periodic table-fr final.svg|{{en}} [[Tableau périodique des éléments|Tableau périodique]] indiquant l'origine [[Histoire de l'Univers|cosmogénique]] de chaque [[Élément chimique|élément]].

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Publications associées (38)
Concepts associés (19)
Isotope
thumb|upright=1.2|Quelques isotopes de l'oxygène, de l'azote et du carbone. On appelle isotopes (d'un certain élément chimique) les nucléides partageant le même nombre de protons (caractéristique de cet élément), mais ayant un nombre de neutrons différent. Autrement dit, si l'on considère deux nucléides dont les nombres de protons sont Z et Z, et les nombres de neutrons N et N, ces nucléides sont dits isotopes si Z = Z et N ≠ N.
Capture neutronique
En physique nucléaire, la capture neutronique est le processus par lequel un noyau capture un neutron sans se désintégrer (et émet un rayonnement gamma pour évacuer l'énergie en excès). Ils fusionnent pour former un noyau plus lourd. Comme les neutrons n'ont pas de charge électrique, ils peuvent entrer dans un noyau plus facilement que les particules chargées positivement, qui sont repoussées électrostatiquement. La capture de neutrons joue un rôle important dans la nucléosynthèse cosmique des éléments lourds.
Nucléosynthèse stellaire
La nucléosynthèse stellaire est le terme utilisé en astrophysique pour désigner l'ensemble des réactions nucléaires qui se produisent à l'intérieur des étoiles (fusion nucléaire et processus s) ou pendant leur destruction explosive (processus r, p, rp) et dont le résultat est la synthèse de la plupart des noyaux atomiques. La position d'une étoile sur le diagramme de Hertzsprung-Russell détermine en grande partie les éléments qu'elle synthétise. L'origine des éléments a posé un problème difficile aux scientifiques pendant longtemps.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.