**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Estimation of Self-Exciting Point Processes from Time-Censored Data

Abstract

Self-exciting point processes, widely used to model arrival phenomena in nature and society, are often difficult to identify. The estimation becomes even more challenging when arrivals are recorded only as bin counts on a finite partition of the observation interval. In this paper, we propose the recursive identification with sample correction (RISC) algorithm for the estimation of process parameters from time-censored data. In every iteration, a synthetic sample path is generated and corrected to match the observed bin counts. Then the process parameters update and a unique iteration is performed to successively approximate the stochastic characteristics of the observed process. In terms of finite-sample approximation error, the proposed RISC framework performs favorably over extant methods, as well as compared to a naïve locally uniform sample redistribution. The results of an extensive numerical experiment indicate that the reconstruction of an intrabin history based on the conditional intensity of the process is crucial for attaining superior performance in terms of estimation error.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (31)

Related publications (32)

Related MOOCs (8)

Ontological neighbourhood

Standard error

The standard error (SE) of a statistic (usually an estimate of a parameter) is the standard deviation of its sampling distribution or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error of the mean (SEM). The sampling distribution of a mean is generated by repeated sampling from the same population and recording of the sample means obtained. This forms a distribution of different means, and this distribution has its own mean and variance.

Estimation theory

Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements.

Fixed-point iteration

In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

Optimization: principles and algorithms - Network and discrete optimization

Introduction to network optimization and discrete optimization

Georges Meylan, Yi Wang, Richard Massey

Aims. We investigate the contribution of shot-noise and sample variance to uncertainties in the cosmological parameter constraints inferred from cluster number counts, in the context of the Euclid survey. Methods. By analysing 1000 Euclid-like light cones, ...

We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...

Pablo Antolin Sanchez, Ondine Gabrielle Chanon

Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error ...

2022