Concept

Hydraulic mining

Summary
Hydraulic mining is a form of mining that uses high-pressure jets of water to dislodge rock material or move sediment. In the placer mining of gold or tin, the resulting water-sediment slurry is directed through sluice boxes to remove the gold. It is also used in mining kaolin and coal. Hydraulic mining developed from ancient Roman techniques that used water to excavate soft underground deposits. Its modern form, using pressurized water jets produced by a nozzle called a "monitor", came about in the 1850s during the California Gold Rush in the United States. Though successful in extracting gold-rich minerals, the widespread use of the process resulted in extensive environmental damage, such as increased flooding and erosion, and sediment blocking waterways and covering farm fields. These problems led to its legal regulation. Hydraulic mining has been used in various forms around the world. Hydraulic mining had its precursor in the practice of ground sluicing, a development of which is also known as "hushing", in which surface streams of water were diverted so as to erode gold-bearing gravels. This technique was developed in the first centuries BC and AD by Roman miners to erode away alluvium. The Romans used ground sluicing to remove overburden and the gold-bearing debris in Las Médulas of Spain, and Dolaucothi in Great Britain. The method was also used in Elizabethan England and Wales (and rarely, Scotland) for developing lead, tin and copper mines. Water was used on a large scale by Roman engineers in the first centuries BC and AD when the Roman empire was expanding rapidly in Europe. Using a process later known as hushing, the Romans stored a large volume of water in a reservoir immediately above the area to be mined; the water was then quickly released. The resulting wave of water removed overburden and exposed bedrock. Gold veins in the bedrock were then worked using a number of techniques, and water power was used again to remove debris.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.