Summary
The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic. Earth's rotation about its axis causes diurnal motion, so that the Sun appears to move across the sky in a Sun path that depends on the observer's geographic latitude. The time when the Sun transits the observer's meridian depends on the geographic longitude. To find the Sun's position for a given location at a given time, one may therefore proceed in three steps as follows: calculate the Sun's position in the ecliptic coordinate system, convert to the equatorial coordinate system, and convert to the horizontal coordinate system, for the observer's local time and location. This is the coordinate system normally used to calculate the position of the Sun in terms of solar zenith angle and solar azimuth angle, and the two parameters can be used to depict the Sun path. This calculation is useful in astronomy, navigation, surveying, meteorology, climatology, solar energy, and sundial design. These equations, from the Astronomical Almanac, can be used to calculate the apparent coordinates of the Sun, mean equinox and ecliptic of date, to a precision of about 0°.01 (36′′), for dates between 1950 and 2050. These equations are coded into a Fortran 90 routine in Ref. and are used to calculate the solar zenith angle and solar azimuth angle as observed from the surface of the Earth. Start by calculating n, the number of days (positive or negative, including fractional days) since Greenwich noon, Terrestrial Time, on 1 January 2000 (J2000.0). If the Julian date for the desired time is known, then The mean longitude of the Sun, corrected for the aberration of light, is: The mean anomaly of the Sun (actually, of the Earth in its orbit around the Sun, but it is convenient to pretend the Sun orbits the Earth), is: Put and in the range 0° to 360° by adding or subtracting multiples of 360° as needed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (3)
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
PHYS-118: Building physics
Ce cours traite des principaux phénomènes physiques observables dans le bâtiment et doit permettre à l'étudiant d'acquérir des connaissances de base dans le domaine de la physique du bâtiment.
ENV-340: Fundamentals of satellite positioning
Bases des références géodésiques, principe de mesure utilisé en localisation par satellites et de l'estimation de la qualité de positions GNSS (Global Navigation Satellites Systems).
Related lectures (20)
Inequality of Seasons: Earth's Orbit Representation
Explores the inequality of seasons by examining the Earth's orbit and the causes of the seasons in architecture and gnomonics.
Ellipses and Curves in Geometry
Explores ellipses, curves, and their applications in astronomy and mathematics.
Gnomonics: Measurement of Shadows and Solar Time
Covers gnomonics, the measurement of time using shadows and the relationship with latitude and solar time.
Show more
Related publications (19)
Related people (1)
Related concepts (16)
Solar zenith angle
The solar zenith angle is the zenith angle of the sun, i.e., the angle between the sun’s rays and the vertical direction. It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane. At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans.
Solar azimuth angle
The solar azimuth angle is the azimuth (horizontal angle with respect to north) of the Sun's position. This horizontal coordinate defines the Sun's relative direction along the local horizon, whereas the solar zenith angle (or its complementary angle solar elevation) defines the Sun's apparent altitude. There are several conventions for the solar azimuth; however, it is traditionally defined as the angle between a line due south and the shadow cast by a vertical rod on Earth.
Sun path
Sun path, sometimes also called day arc, refers to the daily and seasonal arc-like path that the Sun appears to follow across the sky as the Earth rotates and orbits the Sun. The Sun's path affects the length of daytime experienced and amount of daylight received along a certain latitude during a given season. The relative position of the Sun is a major factor in the heat gain of buildings and in the performance of solar energy systems.
Show more