Summary
Intermodal freight transport involves the transportation of freight in an intermodal container or vehicle, using multiple modes of transportation (e.g., rail, ship, aircraft, and truck), without any handling of the freight itself when changing modes. The method reduces cargo handling, and so improves security, reduces damage and loss, and allows freight to be transported faster. Reduced costs over road trucking is the key benefit for inter-continental use. This may be offset by reduced timings for road transport over shorter distances. Intermodal transportation has its origin in 18th century England and predates the railways. Some of the earliest containers were those used for shipping coal on the Bridgewater Canal in England in the 1780s. Coal containers (called "loose boxes" or "tubs") were soon deployed on the early canals and railways and were used for road/rail transfers (road at the time meaning horse-drawn vehicles). Wooden coal containers were first used on the railways in the 1830s on the Liverpool and Manchester Railway. In 1841, Isambard Kingdom Brunel introduced iron containers to move coal from the vale of Neath to Swansea Docks. By the outbreak of the First World War the Great Eastern Railway was using wooden containers to trans-ship passenger luggage between trains and sailings via the port of Harwich. The early 1900s saw the first adoption of covered containers, primarily for the movement of furniture and intermodal freight between road and rail. A lack of standards limited the value of this service and this in turn drove standardisation. In the U.S. such containers, known as "lift vans", were in use from as early as 1911. In the United Kingdom, containers were first standardised by the Railway Clearing House (RCH) in the 1920s, allowing both railway-owned and privately-owned vehicles to be carried on standard container flats. By modern standards these containers were small, being long, normally wooden and with a curved roof and insufficient strength for stacking.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
HUM-124(a): Global issues: mobility A
Le cours présente l'enjeu mondial de la mobilité. L'approche interdisciplinaire intègre les SHS et les sciences de l'ingénieur et initie au travail de groupe.
CIVIL-455: Transportation economics
The scope of the lecture is to provide the basic concepts in transport economics and introduce new ones for private and public transport and environmental issues. Demand, supply, welfare analysis an
PHYS-101(g): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr