Summary
An Alu element is a short stretch of DNA originally characterized by the action of the Arthrobacter luteus (Alu) restriction endonuclease. Alu elements are the most abundant transposable elements, containing over one million copies dispersed throughout the human genome. Alu elements were thought to be selfish or parasitic DNA, because their sole known function is self reproduction. However, they are likely to play a role in evolution and have been used as genetic markers. They are derived from the small cytoplasmic 7SL RNA, a component of the signal recognition particle. Alu elements are highly conserved within primate genomes and originated in the genome of an ancestor of Supraprimates. Alu insertions have been implicated in several inherited human diseases and in various forms of cancer. The study of Alu elements has also been important in elucidating human population genetics and the evolution of primates, including the evolution of humans. The Alu family is a family of repetitive elements in primate genomes, including the human genome. Modern Alu elements are about 300 base pairs long and are therefore classified as short interspersed nuclear elements (SINEs) among the class of repetitive DNA elements. The typical structure is 5' - Part A - A5TACA6 - Part B - PolyA Tail - 3', where Part A and Part B (also known as "left arm" and "right arm") are similar nucleotide sequences. Expressed another way, it is believed modern Alu elements emerged from a head to tail fusion of two distinct FAMs (fossil antique monomers) over 100 million years ago, hence its dimeric structure of two similar, but distinct monomers (left and right arms) joined by an A-rich linker. Both monomers are thought to have evolved from 7SL, also known as SRP RNA. The length of the polyA tail varies between Alu families. There are over one million Alu elements interspersed throughout the human genome, and it is estimated that about 10.7% of the human genome consists of Alu sequences. However, less than 0.5% are polymorphic (i.e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.