In mathematics, the free category or path category generated by a directed graph or quiver is the that results from freely concatenating arrows together, whenever the target of one arrow is the source of the next. More precisely, the objects of the category are the vertices of the quiver, and the morphisms are paths between objects. Here, a path is defined as a finite sequence where is a vertex of the quiver, is an edge of the quiver, and n ranges over the non-negative integers. For every vertex of the quiver, there is an "empty path" which constitutes the identity morphisms of the category. The composition operation is concatenation of paths. Given paths their composition is Note that the result of the composition starts with the right operand of the composition, and ends with its left operand. If is the quiver with one vertex and one edge from that object to itself, then the free category on has as arrows , , ∘,∘∘, etc. Let be the quiver with two vertices , and two edges , from to and to , respectively. Then the free category on has two identity arrows and an arrow for every finite sequence of alternating s and s, including: , , ∘, ∘, ∘∘, ∘∘, etc. If is the quiver , then the free category on has (in addition to three identity arrows), arrows , , and ∘. If a quiver has only one vertex, then the free category on has only one object, and corresponds to the free monoid on the edges of . The Cat has a forgetful functor into the quiver category Quiv: Cat → Quiv which takes objects to vertices and morphisms to arrows. Intuitively, "[forgets] which arrows are composites and which are identities". This forgetful functor is right adjoint to the functor sending a quiver to the corresponding free category. The free category on a quiver can be described up to isomorphism by a universal property. Let : Quiv → Cat be the functor that takes a quiver to the free category on that quiver (as described above), let be the forgetful functor defined above, and let be any quiver.