La notion de limite est une construction catégorique abstraite, qui rend compte d'objets tels que les produits, les produits fibrés et les limites projectives. La construction duale, la colimite, rend compte entre autres des coproduits, sommes amalgamées et limites inductives. Dans certains cas, cette notion coïncide avec la limite au sens de l'analyse.
Soit une catégorie. On considère un diagramme dans , traduit par un foncteur . Dans de nombreux cas, on considère une petite catégorie, voire finie, et on parle respectivement de petit diagramme ou de diagramme fini.
Un dans F est la donnée d'un objet N de et d'une famille de morphismes indicés par les objets X de , telle que pour tout morphisme f : X → Y dans , on a . Une limite du diagramme est un cône dans F tel que, pour tout autre cône dans F, il existe
un unique morphisme médiateur u : N → L vérifiant pour tout X dans . Ainsi, tout cône se factorise par la limite, de manière unique. En d'autres termes, on a le diagramme suivant :
center
De manière équivalente, les limites sont les objets terminaux de la dans F. Encore un autre point de vue est le suivant : la catégorie de foncteurs correspond à la catégorie des diagrammes de type dans . On a le qui envoie tout objet N de vers le foncteur constant. Alors les transformations naturelles (qui sont des foncteurs au sens de la catégorie de foncteurs) sont exactement les cônes de N dans F. Une limite de F n'est alors rien d'autre qu'un morphisme universel de vers F. Ce point de vue rend visible que les limites sont des constructions universelles, ainsi que leur caractère fonctoriel : le foncteur Lim est adjoint à droite au foncteur diagonal.
Il est tout à fait possible qu'un diagramme ne possède aucune limite, mais si elle existe, elle est unique à isomorphisme près. D'une manière générale, les objets et morphismes précis qui interviennent dans le diagramme dont on prend la limite sont moins importants que les relations qui les lient. En ce sens, un égaliseur est essentiellement la limite d'un diagramme de type .