In statistics, Procrustes analysis is a form of statistical shape analysis used to analyse the distribution of a set of shapes. The name Procrustes (Προκρούστης) refers to a bandit from Greek mythology who made his victims fit his bed either by stretching their limbs or cutting them off.
In mathematics:
an orthogonal Procrustes problem is a method which can be used to find out the optimal rotation and/or reflection (i.e., the optimal orthogonal linear transformation) for the Procrustes Superimposition (PS) of an object with respect to another.
a constrained orthogonal Procrustes problem, subject to det(R) = 1 (where R is an orthogonal matrix), is a method which can be used to determine the optimal rotation for the PS of an object with respect to another (reflection is not allowed). In some contexts, this method is called the Kabsch algorithm.
When a shape is compared to another, or a set of shapes is compared to an arbitrarily selected reference shape, Procrustes analysis is sometimes further qualified as classical or ordinary, as opposed to generalized Procrustes analysis (GPA), which compares three or more shapes to an optimally determined "mean shape".
To compare the shapes of two or more objects, the objects must be first optimally "superimposed". Procrustes superimposition (PS) is performed by optimally translating, rotating and uniformly scaling the objects. In other words, both the placement in space and the size of the objects are freely adjusted. The aim is to obtain a similar placement and size, by minimizing a measure of shape difference called the Procrustes distance between the objects. This is sometimes called full, as opposed to partial PS, in which scaling is not performed (i.e. the size of the objects is preserved). Notice that, after full PS, the objects will exactly coincide if their shape is identical. For instance, with full PS two spheres with different radii will always coincide, because they have exactly the same shape. Conversely, with partial PS they will never coincide.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Statistical shape analysis is an analysis of the geometrical properties of some given set of shapes by statistical methods. For instance, it could be used to quantify differences between male and female gorilla skull shapes, normal and pathological bone shapes, leaf outlines with and without herbivory by insects, etc. Important aspects of shape analysis are to obtain a measure of distance between shapes, to estimate mean shapes from (possibly random) samples, to estimate shape variability within samples, to perform clustering and to test for differences between shapes.
In morphometrics, landmark point or shortly landmark is a point in a shape object in which correspondences between and within the populations of the object are preserved. In other disciplines, landmarks may be known as vertices, anchor points, control points, sites, profile points, 'sampling' points, nodes, markers, fiducial markers, etc. Landmarks can be defined either manually by experts or automatically by a computer program. There are three basic types of landmarks: anatomical landmarks, mathematical landmarks or pseudo-landmarks.
Computational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures. The field is broadly defined and includes foundations in anatomy, applied mathematics and pure mathematics, machine learning, computational mechanics, computational science, biological imaging, neuroscience, physics, probability, and statistics; it also has strong connections with fluid mechanics and geometric mechanics.
Covariance operators are fundamental in functional data analysis, providing the canonical means to analyse functional variation via the celebrated Karhunen-Loeve expansion. These operators may themselves be subject to variation, for instance in contexts wh ...
2019
, , ,
We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplici ...
SIAM PUBLICATIONS2020
Covariance operators play a fundamental role in functional data analysis, providing the canonical means to analyse functional variation via the celebrated Karhunen-Loève expansion. These operators may themselves be subject to variation, for instance in con ...