**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Dictionary Learning for Two-Dimensional Kendall Shapes

Julien René Fageot, Anna You-Lai Song, Virginie Sophie Uhlmann, Michaël Unser

*SIAM PUBLICATIONS, *2020

Article

Article

Résumé

We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplicity and faithfulness with respect to the nonlinear geometric structure of Kendall's shape space. Remarkably, it boils down to a classical dictionary learning formulation modified using complex weights. Existing dictionary learning methods extended to nonlinear spaces map the manifold either to a reproducing kernel Hilbert space or to a tangent space. The first approach is unnecessarily heavy in the case of Kendall's shape space and causes the geometrical understanding of shapes to be lost, while the second one induces distortions and theoretical complexity. Our approach does not suffer from these drawbacks. Instead of embedding the shape space into a linear space, we rely on the hyperplane of centered configurations, including preshapes from which shapes are defined as rotation orbits. In this linear space, the dictionary atoms are scaled and rotated using complex weights before summation. Furthermore, our formulation is more general than Kendall's original one: it applies to discretely defined configurations of landmarks as well as continuously defined interpolating curves. We implemented our algorithm by adapting the method of optimal directions combined to a Cholesky-optimized order recursive matching pursuit. An interesting feature of our shape dictionary is that it produces visually realistic atoms, while guaranteeing reconstruction accuracy. Its efficiency can mostly be attributed to a clear formulation of the framework with complex numbers. We illustrate the strong potential of our approach for the characterization of datasets of shapes up to similitudes and the analysis of patterns in deforming two-dimensional shapes.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (20)

Interpolation numérique

En analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par

Espace tangent

L'espace tangent en un point p d'une variété différentielle M est un espace vectoriel qui intuitivement est l'ensemble de tous les vecteurs-vitesse possibles d'un « mobile » se déplaçant (sans pouvo

Nombre complexe

En mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. L

Publications associées (11)

Chargement

Chargement

Chargement

Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured form, i.e., as iterative methods acting on variables defined exclusively on the interfaces of the overlapping domain decomposition. We call such formulations substructured domain decomposition methods. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that RAS and SRAS are equivalent when used as iterative solvers, as they produce the same iterates, while they are substantially different when used as preconditioners for GMRES. We link the volume and substructured Krylov spaces and show that the iterates are different by deriving the least squares problems solved at each GMRES iteration. When used as iterative solvers, SRAS presents computational advantages over RAS, as it avoids computations with matrices and vectors at the volume level. When used as preconditioners, SRAS has the further advantage of allowing GMRES to store smaller vectors and perform orthogonalization in a lower dimensional space. We then consider nonlinear problems, and we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton’s method. In contrast to the linear case, we prove that Newton’s method applied to the preconditioned volume and substructured formulation produces the same iterates in the nonlinear case. Next, we introduce two-level versions of nonlinear SRAS and SRASPEN. Finally, we validate our theoretical results with numerical experiments.

2022Eleonora Musharbash, Fabio Nobile

In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of $2S$ dynamical symplectic-orthogonal deterministic basis functions with timedependent stochastic coefficients. The reduced (low rank) dynamics is obtained by a symplectic projection of the governing Hamiltonian system onto the tangent space to the approximation manifold along the approximate trajectory. The proposed formulation is equivalent to recasting the governing Hamiltonian system in complex setting and looking for a dynamical low rank approximation in the low dimensional manifold of all complex-valued random fields with rank equal to $S$. Thanks to this equivalence, we are able to properly define the approximation manifold in the real setting, endow it with a differential structure and obtain a proper parametrization of its tangent space, in terms of orthogonal constraints on the dynamics of the deterministic modes. Finally, we recover the Symplectic Dynamically Orthogonal reduced order system for the evolution of both the stochastic coefficients and the deterministic basis of the approximate solution. This consists of a system of $S$ deterministic PDEs coupled to a reduced Hamiltonian system of dimension $2S$. As a result, the approximate solution preserves the mean Hamiltonian energy over the flow.

2017, ,

In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical symplectic-orthogonal deterministic basis functions with timedependent stochastic coefficients. The reduced (low rank) dynamics is obtained by a symplectic projection of the governing Hamiltonian system onto the tangent space to the approximation manifold along the approximate trajectory. The proposed formulation is equivalent to recasting the governing Hamiltonian system in complex setting and looking for a dynamical low rank approximation in the low dimensional manifold of all complex-valued random fields with rank equal to S. Thanks to this equivalence, we are able to properly define the approximation manifold in the real setting, endow it with a differential structure and obtain a proper parametrization of its tangent space, in terms of orthogonal constraints on the dynamics of the deterministic modes. Finally, we recover the Symplectic Dynamically Orthogonal reduced order system for the evolution of both the stochastic coefficients and the deterministic basis of the approximate solution. This consists of a system of S deterministic PDEs coupled to a reduced Hamiltonian system of dimension 2S. As a result, the approximate solution preserves the mean Hamiltonian energy over the flow.