The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.
The viscous stress tensor is formally similar to the elastic stress tensor (Cauchy tensor) that describes internal forces in an elastic material due to its deformation. Both tensors map the normal vector of a surface element to the density and direction of the stress acting on that surface element. However, elastic stress is due to the amount of deformation (strain), while viscous stress is due to the rate of change of deformation over time (strain rate). In viscoelastic materials, whose behavior is intermediate between those of liquids and solids, the total stress tensor comprises both viscous and elastic ("static") components. For a completely fluid material, the elastic term reduces to the hydrostatic pressure.
In an arbitrary coordinate system, the viscous stress ε and the strain rate E at a specific point and time can be represented by 3 × 3 matrices of real numbers. In many situations there is an approximately linear relation between those matrices; that is, a fourth-order viscosity tensor μ such that ε = μE. The tensor μ has four indices and consists of 3 × 3 × 3 × 3 real numbers (of which only 21 are independent). In a Newtonian fluid, by definition, the relation between ε and E is perfectly linear, and the viscosity tensor μ is independent of the state of motion or stress in the fluid. If the fluid is isotropic as well as Newtonian, the viscosity tensor μ will have only three independent real parameters: a bulk viscosity coefficient, that defines the resistance of the medium to gradual uniform compression; a dynamic viscosity coefficient that expresses its resistance to gradual shearing, and a rotational viscosity coefficient which results from a coupling between the fluid flow and the rotation of the individual particles.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In materials science, strain rate is the change in strain (deformation) of a material with respect to time. The strain rate at some point within the material measures the rate at which the distances of adjacent parcels of the material change with time in the neighborhood of that point. It comprises both the rate at which the material is expanding or shrinking (expansion rate), and also the rate at which it is being deformed by progressive shearing without changing its volume (shear rate).
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to plasticity, in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials.
Le cours offre des méthodes de calcul hydraulique pour des problèmes d'écoulements non permanents tels que les crues, les vagues, et les ruptures de barrage. L'accent est mis sur la compréhension phys
We consider on the torus the scaling limit of stochastic 2D (inviscid) fluid dynamics equations with transport noise to deterministic viscous equations. Quantitative estimates on the convergence rates are provided by combining analytic and probabilistic ar ...
We study the drainage of a viscous liquid film coating the outside of a solid horizontal cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge numbers Oh, where inertia is negligible compared to viscous effects. We first study t ...
This paper numerically evaluates the accuracy and performance of a stabilized finite element Reduced Order Modelling (ROM) approach that is designed to simulate pulsatile blood flows. The method is able to estimate fluid flow parametric solutions of intere ...