The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.
The viscous stress tensor is formally similar to the elastic stress tensor (Cauchy tensor) that describes internal forces in an elastic material due to its deformation. Both tensors map the normal vector of a surface element to the density and direction of the stress acting on that surface element. However, elastic stress is due to the amount of deformation (strain), while viscous stress is due to the rate of change of deformation over time (strain rate). In viscoelastic materials, whose behavior is intermediate between those of liquids and solids, the total stress tensor comprises both viscous and elastic ("static") components. For a completely fluid material, the elastic term reduces to the hydrostatic pressure.
In an arbitrary coordinate system, the viscous stress ε and the strain rate E at a specific point and time can be represented by 3 × 3 matrices of real numbers. In many situations there is an approximately linear relation between those matrices; that is, a fourth-order viscosity tensor μ such that ε = μE. The tensor μ has four indices and consists of 3 × 3 × 3 × 3 real numbers (of which only 21 are independent). In a Newtonian fluid, by definition, the relation between ε and E is perfectly linear, and the viscosity tensor μ is independent of the state of motion or stress in the fluid. If the fluid is isotropic as well as Newtonian, the viscosity tensor μ will have only three independent real parameters: a bulk viscosity coefficient, that defines the resistance of the medium to gradual uniform compression; a dynamic viscosity coefficient that expresses its resistance to gradual shearing, and a rotational viscosity coefficient which results from a coupling between the fluid flow and the rotation of the individual particles.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mécanique des milieux continus, on considère la déformation d'un élément de matière au sein d'une pièce. On s'attache donc à décrire ce qui se passe localement et non pas d'un point de vue global, et à utiliser des paramètres indépendants de la forme de la pièce. La vitesse de déformation que l'on considère est donc la dérivée par rapport au temps de la déformation ε ; on la note donc (« epsilon point ») : Elle s'exprime en s−1, parfois en %/s. C'est un des paramètres capitaux en rhéologie.
La viscosité (du latin viscum, gui, glu) peut être définie comme l'ensemble des phénomènes de résistance au mouvement d'un fluide pour un écoulement avec ou sans turbulence. La viscosité diminue la liberté d'écoulement du fluide et dissipe son énergie. Deux grandeurs physiques caractérisent la viscosité : la viscosité dynamique (celle utilisée le plus généralement) et la seconde viscosité ou la viscosité de volume. On utilise aussi des grandeurs dérivées : fluidité, viscosité cinématique ou viscosité élongationnelle.
En physique, l'élasticité est la propriété d'un matériau solide à retrouver sa forme d'origine après avoir été déformé. La déformation élastique est une déformation réversible. Un matériau solide se déforme lorsque des forces lui sont appliquées. Un matériau élastique retrouve sa forme et sa taille initiales quand ces forces ne s'exercent plus, jusqu'à une certaine limite de la valeur de ces forces. Les tissus biologiques sont également plus ou moins élastiques. Les raisons physiques du comportement élastique diffèrent d'un matériau à un autre.
Explore les flux d'invisides, l'importance du nombre de Reynolds, les déformations linéaires et les changements de volume dans la dynamique des fluides.
Le cours offre des méthodes de calcul hydraulique pour des problèmes d'écoulements non permanents tels que les crues, les vagues, et les ruptures de barrage. L'accent est mis sur la compréhension phys
Introduction à la mécanique des fluides, à l'électromagnétisme et aux phénomènes ondulatoires
This paper numerically evaluates the accuracy and performance of a stabilized finite element Reduced Order Modelling (ROM) approach that is designed to simulate pulsatile blood flows. The method is able to estimate fluid flow parametric solutions of intere ...
PERGAMON-ELSEVIER SCIENCE LTD2023
, ,
We study the drainage of a viscous liquid film coating the outside of a solid horizontal cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge numbers Oh, where inertia is negligible compared to viscous effects. We first study t ...
Amer Physical Soc2024
We consider on the torus the scaling limit of stochastic 2D (inviscid) fluid dynamics equations with transport noise to deterministic viscous equations. Quantitative estimates on the convergence rates are provided by combining analytic and probabilistic ar ...