Concept

Resolvent (Galois theory)

Summary
In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G. More exactly, if the Galois group is included in G, then the resolvent has a rational root, and the converse is true if the rational root is a simple root. Resolvents were introduced by Joseph Louis Lagrange and systematically used by Évariste Galois. Nowadays they are still a fundamental tool to compute Galois groups. The simplest examples of resolvents are where is the discriminant, which is a resolvent for the alternating group. In the case of a cubic equation, this resolvent is sometimes called the quadratic resolvent; its roots appear explicitly in the formulas for the roots of a cubic equation. The cubic resolvent of a quartic equation, which is a resolvent for the dihedral group of 8 elements. The Cayley resolvent is a resolvent for the maximal resoluble Galois group in degree five. It is a polynomial of degree 6. These three resolvents have the property of being always separable, which means that, if they have a multiple root, then the polynomial p is not irreducible. It is not known if there is an always separable resolvent for every group of permutations. For every equation the roots may be expressed in terms of radicals and of a root of a resolvent for a resoluble group, because, the Galois group of the equation over the field generated by this root is resoluble. Let n be a positive integer, which will be the degree of the equation that we will consider, and (X1, ..., Xn) an ordered list of indeterminates. According to Vieta's formulas this defines the generic monic polynomial of degree n where Ei is the i th elementary symmetric polynomial. The symmetric group Sn acts on the Xi by permuting them, and this induces an action on the polynomials in the Xi.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
MATH-317: Algebra V - Galois theory
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi