A helium–neon laser or He-Ne laser is a type of gas laser whose high energetic medium gain medium consists of a mixture of ratio(between 5:1 and 20:1) of helium and neon at a total pressure of about 1 torr inside of a small electrical discharge. The best-known and most widely used He-Ne laser operates at a wavelength of 632.8 nm, in the red part of the visible spectrum.
The first He-Ne lasers emitted infrared at 1150 nm, and were the first gas lasers and the first lasers with continuous wave output. However, a laser that operated at visible wavelengths was much more in demand, and a number of other neon transitions were investigated to identify ones in which a population inversion can be achieved. The 633 nm line was found to have the highest gain in the visible spectrum, making this the wavelength of choice for most He-Ne lasers. However, other visible and infrared stimulated-emission wavelengths are possible, and by using mirror coatings with their peak reflectance at these other wavelengths; He-Ne lasers could be engineered to employ those transitions, including visible lasers appearing red, orange, yellow, and green. Stimulated emissions are known from over 100 μm in the far infrared to 540 nm in the visible.
Because visible transitions have somewhat lower gain, these lasers generally have lower output efficiencies and are more costly. The 3.39 μm transition has a very high gain, but is prevented from use in an ordinary He-Ne laser (of a different intended wavelength) because the cavity and mirrors are lossy at that wavelength. However, in high-power He-Ne lasers having a particularly long cavity, superluminescence at 3.39 μm can become a nuisance, robbing power from the stimulated emission medium, often requiring additional suppression.
The best-known and most widely used He-Ne laser operates at a wavelength of 632.8 nm, in the red part of the visible spectrum. It was developed at Bell Telephone Laboratories in 1962, 18 months after the pioneering demonstration at the same laboratory of the first continuous infrared He-Ne gas laser in December 1960.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This laboratory work allows students to deepen their understanding of optical instruments, optoelectronic devices and diagnostic methods. Students will be introduced in state of the art optical instru
This laboratory work allows students to deepen their understanding of optical instruments, optoelectronic devices and diagnostic methods. Students will be introduced in state of the art optical instru
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
A laser pointer or laser pen is a small handheld device with a power source (usually a battery) and a laser diode emitting a very narrow coherent low-powered laser beam of visible light, intended to be used to highlight something of interest by illuminating it with a small bright spot of colored light. The small width of the beam and low power of typical laser pointers make the beam itself invisible in a clean atmosphere, only showing a point of light when striking an opaque surface.
Laser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.
A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights.
Crystallization of amorphous layers has been demonstrated under various radically different laser-exposure conditions, including continuous wave (cw) and pulsed lasers. Here, we investigate the specific role of ionization in the crystallization of dielectr ...
Photonic integrated circuits are paving the way for novel on-chip functionalities with diverse applications in communication, computing, and beyond. The integration of on-chip light sources, especially single-mode lasers, is crucial for advancing those pho ...
In semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr3 perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occup ...