Concept

Computational electromagnetics

Summary
Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment. It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space. A large subfield is antenna modeling computer programs, which calculate the radiation pattern and electrical properties of radio antennas, and are widely used to design antennas for specific applications. Several real-world electromagnetic problems like electromagnetic scattering, electromagnetic radiation, modeling of waveguides etc., are not analytically calculable, for the multitude of irregular geometries found in actual devices. Computational numerical techniques can overcome the inability to derive closed form solutions of Maxwell's equations under various constitutive relations of media, and boundary conditions. This makes computational electromagnetics (CEM) important to the design, and modeling of antenna, radar, satellite and other communication systems, nanophotonic devices and high speed silicon electronics, medical imaging, cell-phone antenna design, among other applications. CEM typically solves the problem of computing the E (electric) and H (magnetic) fields across the problem domain (e.g., to calculate antenna radiation pattern for an arbitrarily shaped antenna structure). Also calculating power flow direction (Poynting vector), a waveguide's normal modes, media-generated wave dispersion, and scattering can be computed from the E and H fields. CEM models may or may not assume symmetry, simplifying real world structures to idealized cylinders, spheres, and other regular geometrical objects. CEM models extensively make use of symmetry, and solve for reduced dimensionality from 3 spatial dimensions to 2D and even 1D.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.