Summary
In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with rational coefficients. This criterion is not applicable to all polynomials with integer coefficients that are irreducible over the rational numbers, but it does allow in certain important cases for irreducibility to be proved with very little effort. It may apply either directly or after transformation of the original polynomial. This criterion is named after Gotthold Eisenstein. In the early 20th century, it was also known as the Schönemann–Eisenstein theorem because Theodor Schönemann was the first to publish it. Suppose we have the following polynomial with integer coefficients: If there exists a prime number p such that the following three conditions all apply: p divides each ai for 0 ≤ i < n, p does not divide an, and p2 does not divide a0, then Q is irreducible over the rational numbers. It will also be irreducible over the integers, unless all its coefficients have a nontrivial factor in common (in which case Q as integer polynomial will have some prime number, necessarily distinct from p, as an irreducible factor). The latter possibility can be avoided by first making Q primitive, by dividing it by the greatest common divisor of its coefficients (the content of Q). This division does not change whether Q is reducible or not over the rational numbers (see Primitive part–content factorization for details), and will not invalidate the hypotheses of the criterion for p (on the contrary it could make the criterion hold for some prime, even if it did not before the division). Eisenstein's criterion may apply either directly (i.e., using the original polynomial) or after transformation of the original polynomial. Consider the polynomial Q(x) = 3x4 + 15x2 + 10.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.