Concept

Electric power transmission

Summary
Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid. Efficient long-distance transmission of electric power requires high voltages. This reduces the losses produced by strong currents. Transmission lines use either alternating current (AC) or direct current (DC). The voltage level is changed with transformers. The voltage is stepped up for transmission, then reduced for local distribution. A wide area synchronous grid, known as an "interconnection" in North America, directly connects generators delivering AC power with the same relative frequency to many consumers. North America has four major interconnections: Western, Eastern, Quebec and Texas. One grid connects most of continental Europe. Historically, transmission and distribution lines were often owned by the same company, but starting in the 1990s, many countries liberalized the regulation of the electricity market in ways that led to separate companies handling transmission and distribution. Most North American transmission lines are high-voltage three-phase AC, although single phase AC is sometimes used in railway electrification systems. DC technology is used for greater efficiency over longer distances, typically hundreds of miles. High-voltage direct current (HVDC) technology is also used in submarine power cables (typically longer than 30 miles (50 km)), and in the interchange of power between grids that are not mutually synchronized. HVDC links stabilize power distribution networks where sudden new loads, or blackouts, in one part of a network might otherwise result in synchronization problems and cascading failures.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
EE-575: Wave propagation along transmission lines
In this lecture, we will describe the theoretical models and computational methods for the analysis of wave propagation along transmission lines.
EE-570: Power system restructuring and deregulation
This course presents different types and mechanisms of electricity markets. It addresses in particular their impacts on power/distribution systems operation and consequently the appropriate strategies
MGT-555: Innovation & entrepreneurship in engineering
This course is a joint initiative between the School of Engineering and the College of Management to encourage and promote entrepreneurship and management skills, engineering design, hands-on experien
Show more
Related lectures (182)
Operation of Distributed Energy Storage Systems
By the instructor Mario Paolone explores the challenges and solutions of integrating distributed energy storage systems into power grids.
Torsion and Stress Concentration
Explores torsion, stress concentration, power transmission, and torsional stiffness in various geometries.
Stress State Analysis: Shear Stress and Main Axes
Analyzes stress states in the plane, focusing on shear stress, main axes, and safety factors.
Show more
Related publications (1,000)

GreenEVT: Greensboro Electric Vehicle Testbed

Nils Gustav Nilsson

The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures wil ...
Piscataway2024

Beam Loss Simulations for the Proposed TATTOS Beamline at HIPA

Mike Seidel, Hui Zhang

IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technologies) is a proposed initia- tive envisaged for the high-intensity proton accelerator fa- cility (HIPA) at the Paul Scherrer Institute (PSI). As part of IMPACT, a radioisotope ta ...
JACoW (Joint Accelerator Conferences Website)2024

Overview on the Applicability of the ITER/NPP-Like Technologies to the DEMO Plant Electrical System and Promising Alternatives

Damien Fasel, Zhe Chen, Yuchen Wang, Elena Gaio, Alberto Ferro, Francesco Santoro, Hanwen Zhang

The Plant Electrical System (PES) of the European DEMOnstration fusion power plant (DEMO), presently under conceptual design, shall supply power to the loads and deliver net power to the Power Transmission Grid (PTG). Starting from the available requiremen ...
Piscataway2024
Show more
Related concepts (58)
Electrical grid
An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of: power stations: often located near energy and away from heavily populated areas electrical substations to step voltage up or down electric power transmission to carry power long distances electric power distribution to individual customers, where voltage is stepped down again to the required service voltage(s).
Insulator (electricity)
An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals. A perfect insulator does not exist because even insulators contain small numbers of mobile charges (charge carriers) which can carry current.
Electric power distribution
Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2kV and 33kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises.
Show more
Related MOOCs (17)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Show more