A speleothem (ˈspiːliəθɛm; ) is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.
More than 300 variations of cave mineral deposits have been identified. The vast majority of speleothems are calcareous, composed of calcium carbonate (CaCO3) minerals (calcite or aragonite). Less commonly, speleothems are made of calcium sulfate (gypsum or mirabilite) or opal. Speleothems of pure calcium carbonate or calcium sulfate are translucent and colorless. The presence of iron oxide or copper provides a reddish brown color. The presence of manganese oxide can create darker colors such as black or dark brown. Speleothems can also be brown due to the presence of mud and silt.
Many factors impact the shape and color of speleothems, including the chemical composition of the rock and water, water seepage rate, water flow direction, cave temperature, cave humidity, air currents, aboveground climate, and aboveground plant cover. Weaker flows and short travel distances form narrower stalagmites, while heavier flow and a greater fall distance tend to form broader ones.
Most cave chemistry involves calcium carbonate (CaCO3) containing rocks such as limestone or dolomite, composed of calcite or aragonite minerals. Carbonate minerals are more soluble in the presence of higher carbon dioxide (CO2) and lower temperatures. Calcareous speleothems form via carbonate dissolution reactions whereby rainwater reacts with soil CO2 to create weakly acidic water via the reaction:
H2O + CO2 → H2CO3
As the acidic water travels through the calcium carbonate bedrock from the surface to the cave ceiling, it dissolves the bedrock via the reaction:
CaCO3 + H2CO3 → Ca2+ + 2 HCO3−
When the solution reaches a cave, the lower pCO2 in the cave drives the precipitation of CaCO3 via the reaction:
Ca2+ + 2 HCO3− → CaCO3 + H2O + CO2
Over time, the accumulation of these precipitates form dripstones (stalagmites, stalactites), and flowstones, two of the major types of speleothems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). The first geologist to distinguish dolomite rock from limestone was Belsazar Hacquet in 1778. Most dolomite was formed as a magnesium replacement of limestone or of lime mud before lithification.
Tufa is a variety of limestone formed when carbonate minerals precipitate out of water in unheated rivers or lakes. Geothermally heated hot springs sometimes produce similar (but less porous) carbonate deposits, which are known as travertine. Tufa is sometimes referred to as (meteogene) travertine. It should not be confused with hot spring (thermogene) travertine. Tufa, which is calcareous, should also not be confused with tuff, a porous volcanic rock with a similar etymology that is sometimes also called "tufa".
A cave or cavern is a natural void in the ground, specifically a space large enough for a human to enter. Caves often form by the weathering of rock and often extend deep underground. The word cave can refer to smaller openings such as sea caves, rock shelters, and grottos, that extend a relatively short distance into the rock and they are called exogene caves. Caves which extend further underground than the opening is wide are called endogene caves. Speleology is the science of exploration and study of all aspects of caves and the cave environment.
Explores geochemical modeling applications, including stability diagrams, selenium speciation, mineral precipitation estimation, and redox disequilibrium.
Explores water quality modeling, focusing on reaction kinetics, equilibrium constants, and temperature effects, with practical examples of calcite precipitation and iron oxidation.
Explores radiative forcing, climate sensitivity, and feedback mechanisms in climate change, emphasizing the role of various components like CO2 and methane.
Discontinuities, including fractures and joint sets, modify the fluid transport properties and strength of rock masses. While open fractures and joints increase rock mass permeability and decrease rock mass strength, fluid flow within these structures can ...
In hardwater lakes, calcite precipitation is an important yet poorly understood process in the lacustrine carbon cycle, in which catchment-derived alkalinity (Alk) is both transformed and translocated. While the physico-chemical conditions supporting the s ...
ELSEVIER2022
Permeability is a key physical property across all spatial scales in the Earth’s crust and exerts significant control on the behaviour of Earth systems, with implications for natural hazards (e.g., earthquakes, slope instabilities, volcanic eruptions) and ...