Summary
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set; there are no unpaired elements between the two sets. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. The term one-to-one correspondence must not be confused with one-to-one function (an injective function; see figures). A bijection from the set X to the set Y has an inverse function from Y to X. If X and Y are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. A bijective function from a set to itself is also called a permutation, and the set of all permutations of a set forms the symmetric group. Bijective functions are essential to many areas of mathematics including the definitions of isomorphisms, homeomorphisms, diffeomorphisms, permutation groups, and projective maps. For a pairing between X and Y (where Y need not be different from X) to be a bijection, four properties must hold: each element of X must be paired with at least one element of Y, no element of X may be paired with more than one element of Y, each element of Y must be paired with at least one element of X, and no element of Y may be paired with more than one element of X. Satisfying properties (1) and (2) means that a pairing is a function with domain X. It is more common to see properties (1) and (2) written as a single statement: Every element of X is paired with exactly one element of Y. Functions which satisfy property (3) are said to be "onto Y " and are called surjections (or surjective functions).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.