En mathématiques, une bijection ou application bijective (parfois appelée correspondances biunivoques) est une application qui est à la fois injective et surjective, autrement dit pour laquelle tout élément de son ensemble d'arrivée possède un et un seul antécédent.
Une propriété des bijections est que s'il existe une bijection f d'un ensemble E dans un ensemble F alors il existe une bijection réciproque de F dans E qui à chaque élément de F associe son antécédent par f. Les deux ensembles sont dits en bijection, ou équipotents.
Cantor a le premier démontré que s'il existe une injection de E vers F et une injection de F vers E (non nécessairement surjectives), alors E et F sont équipotents (c'est le théorème de Cantor-Bernstein).
Si deux ensembles finis sont équipotents alors ils ont le même nombre d'éléments. L'extension de cette équivalence aux ensembles infinis a mené au concept de cardinal d'un ensemble, et à distinguer différentes tailles d'ensembles infinis, qui sont des classes d'équipotence. Ainsi, on peut par exemple montrer que l'ensemble des entiers naturels est de même taille que l'ensemble des rationnels, mais de taille strictement inférieure à l'ensemble des réels. En effet, de dans il existe des injections mais pas de surjection.
Une application est bijective si tout élément de l'ensemble d'arrivée a exactement un antécédent (dans ) par , ce qui s'écrit formellement :
ou, ce qui est équivalent, s'il existe une application qui, composée à gauche ou à droite par , donne l'application identité :
et ,
c'est-à-dire:
Une telle application est alors déterminée de manière unique par . On l'appelle la bijection réciproque de et on la note . C'est aussi une bijection, et sa réciproque est .
Une bijection de dans est une relation binaire de dans qui est une application et dont la relation réciproque est aussi une application.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Explore les limites et les limites dans les catégories de functeurs, en mettant l'accent sur les égaliseurs, les retraits et leur importance dans la théorie des catégories.
thumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
vignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
PurposeIn this work, the limits of image reconstruction in k-space are explored when non-bijective gradient fields are used for spatial encoding. TheoryThe image space analogy between parallel imaging and imaging with non-bijective encoding fields is parti ...
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
A subfamily {F-1, F-2, ..., F-vertical bar P vertical bar} subset of F is a copy of the poset P if there exists a bijection i : P -> {F-1, F-2, ..., F-vertical bar P vertical bar}, such that p