Concept

Variable Specific Impulse Magnetoplasma Rocket

Summary
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant, forming a plasma, then a magnetic field to confine and accelerate the expanding plasma, generating thrust. It is a plasma propulsion engine, one of several types of spacecraft electric propulsion systems. The VASIMR method for heating plasma was originally developed during nuclear fusion research. VASIMR is intended to bridge the gap between high thrust, low specific impulse chemical rockets and low thrust, high specific impulse electric propulsion, but has not yet demonstrated high thrust. The VASIMR concept originated in 1977 with former NASA astronaut Franklin Chang Díaz, who has been developing the technology ever since. VASIMR is a type of electrothermal plasma thruster/electrothermal magnetoplasma thruster. In these engines, a neutral, inert propellant is ionized and heated using radio waves. The resulting plasma is then accelerated with magnetic fields to generate thrust. Other related electrically powered spacecraft propulsion concepts are the electrodeless plasma thruster, the microwave arcjet rocket, and the pulsed inductive thruster. The propellant, a neutral gas such as argon or xenon, is injected into a hollow cylinder surfaced with electromagnets. On entering the engine, the gas is first heated to a "cold plasma" by a helicon RF antenna/coupler that bombards the gas with electromagnetic energy, at a frequency of 10 to 50 MHz, stripping electrons off the propellant atoms and producing a plasma of ions and free electrons. By varying the amount of RF heating energy and plasma, VASIMR is claimed to be capable of generating either low-thrust, high–specific impulse exhaust or relatively high-thrust, low–specific impulse exhaust. The second phase of the engine is a strong solenoid-configuration electromagnet that channels the ionized plasma, acting as a convergent-divergent nozzle like the physical nozzle in conventional rocket engines.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.